Skip to main content
Log in

Optofluidic dye lasers

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Optofluidic dye lasers are microfabricated liquid dye lasers enabled by the microfluidics technology. The integration of dye lasers with microfluidics not only facilitates the implementation of complete “lab-on-a-chip” systems, but also allows the dynamical control of the laser properties which is not achievable with solid-state optical components. We review the recent demonstrations of on-chip liquid dye lasers and some of the pre-microfluidics era microscopic dye lasers which are also amenable to microfluidic implementation. Potential applications and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • An KW (2001) Cylindrical and spherical microcavity lasers based on evanescent-wave-coupled gain. J Chin Chem Soc 48(3):461–468

    Google Scholar 

  • An KW, Moon HJ (2003) Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescent-wave-coupled-gain microsphere dye lasers. J Phys Soc Jpn 72(4):773–776

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Azzouz H, Alkhafadiji L, Balslev S, Johansson J, Mortensen NA, Nilsson A, Kristensen A (2006) Levitated droplet dye laser. Opt Express 14(10):4374–4379

    Article  Google Scholar 

  • Balslev S, Kristensen A (2005) Microfluidic single mode laser using high order Bragg grating and antiguiding segments. Opt Express 13(1):344–351. http://wwwopticsinfobaseorg/abstractcfm?URI=oe131344

    Article  Google Scholar 

  • Balslev S, Jorgensen AM, Bilenberg B, Mogensen KB, Snakenborg D, Geschke O, Kutter JP, Kristensen A (2006) Lab-on-a-chip with integrated optical transducers. Lab Chip 6:213–217

    Article  Google Scholar 

  • Barnes MD, Whitten WB, Arnold S, Ramsey JM (1992) Homogeneous linewidths of Rhodamine-6G at room-temperature from cavity-enhanced spontaneous emission rates. J Chem Phys 97(10):7842–7845

    Article  Google Scholar 

  • Barnes MD, Ng KC, Whitten WB, Ramsey JM (1993) Detection of single Rhodamine-6 g molecules in levitated microdroplets. Anal Chem 65(17):2360–2365

    Article  Google Scholar 

  • Barnes MD, Kung CY, Whitten WB, Ramsey JM, Arnold S, Holler S (1996) Fluorescence of oriented molecules in a microcavity. Phys Rev Lett 76(21):3931–3934

    Article  Google Scholar 

  • Bilenberg B, Helbo B, Kutter JP, Kristensen A (2003) Tunable microfluidic dye laser. In: Proceedings of the 12th international conference on solid-state sensors, actuators and microsystems. Transducers, pp 206–209

  • Campillo AJ, Eversole JD, Lin HB (1991) Cavity quantum electrodynamic enhancement of stimulated-emission in microdroplets. Phys Rev Lett 67(4):437–440

    Article  Google Scholar 

  • Chabinyc ML, Chiu DT, Mcdonald JC, Stroock AD, Christian JF, Karger AM, Whitesides GM (2001) An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem 73(18):4491–4498

    Article  Google Scholar 

  • Chang RK, Campillo AJ (eds) (1996) Optical processes in microcavities, World Scientific, Singapore

  • Cheng Y, Sugioka K, Midorikawa K (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29(17):2007–2009

    Article  Google Scholar 

  • Choi YS, Moon HJ, An KY, Lee SB, Lee JH, Chang JS (2001) Ultrahigh-Q microsphere dye laser based on evanescent-wave coupling. J Korean Phys Soc 39(5):928–931

    Google Scholar 

  • Coldren LA, Corzine SW (1995) Diodelasers and photonic integrated circuits, Wiley-Interscience, New York

  • Davis CC (1996) Lasers and electro-optics. Cambridge University Press, Cambridge

  • De Martini F, Jacobovitz GR (1988) Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity. Phys Rev Lett 60(17):1711–1714

    Article  Google Scholar 

  • Duarte FJ, Hillman LW (eds) (1990) Dye laser principles, Academic, New York

  • Duarte FJ (eds) (1992) Selected papers on dye lasers, SPIE milestone series 45. SPIE Optical Engineering Press, Bellingham

  • Erdogan T, Hall DG (1990) Circularly symmetrical distributed feedback semiconductor-laser: an analysis. J Appl Phys 68(4):1435–1444

    Article  Google Scholar 

  • Erickson D, Li DQ (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26

    Article  Google Scholar 

  • Eversole JD, Lin HB, Huston AL, Campillo AJ, Leung PT, Liu SY, Young K (1993) High-precision identification of morphology-dependent resonances in optical processes in microdroplets. J Opt Soc Am B 10:1955–1968

    Article  Google Scholar 

  • Fujiwara H, Sasaki K (1999) Lasing of a microsphere in dye solution. Jpn J Appl Phys 38(9a):5101–5104

    Article  Google Scholar 

  • Galas JC, Torres J, Belotti M, Kou Q, Chen Y (2005) Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl Phys Lett 86(26):264101

    Article  Google Scholar 

  • Galas JC, Peroz C, Kou Q, Chen Y (2006) Microfluidic dye laser intracavity absorption. Appl Phys Lett 89(22):224101

    Article  Google Scholar 

  • Gersborg-Hansen M, Kristensen A (2006) Optofluidic third order distributed feedback dye laser. Appl Phys Lett 89:103518

    Article  Google Scholar 

  • Gersborg-Hansen M, Kristensen A (2007) Tunability of optofluidic distributed feedback dye lasers. Opt Express 15:137–142

    Article  Google Scholar 

  • Hansch TW (2005) Edible lasers and other delights from the 1970’s. Opt Photon News 16:14–16

    Article  Google Scholar 

  • Helbo B, Kristensen A, Menon A (2003) A micro-cavity fluidic dye laser. J Micromech Microeng 13(2):307–311

    Article  Google Scholar 

  • Hohimer JP, Craft DC, Hadley GR, Vawter GA, Warren ME (1991) Single-frequency continuous-wave operation of ring resonator diode lasers. Appl Phys Lett 59:3360–3362

    Article  Google Scholar 

  • Hong JW, Quake SR (2003) Integrated nanoliter systems. Nat Biotechnol 21:1179–1183

    Article  Google Scholar 

  • Hunsperger RG (2002) Integrated optics, 5th edn. Springer, New York

  • Ippen EP, Shank CV, Dienes A (1971) Rapid photobleaching of organic laser dyes in continuously operated devices. J Quantum Electron 7(4):178–179

    Article  Google Scholar 

  • Ippen EP, Shank CV (1972) Evanescent field-pumped dye laser. Appl Phys Lett 21(7):301–303

    Article  Google Scholar 

  • Johnston Jr TF (1987) Tunable dye lasers, encyclopedia of physical science and technology, vol 14. Academic, New York, pp 96–141

    Google Scholar 

  • Kazes M, Lewis DY, Ebenstein Y, Mokari T, Banin U (2002) Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv Mater 14(4):317

    Article  Google Scholar 

  • Kou Q, Yesilyurt I, Chen Y (2006) Collinear dual-color laser emission from a microfluidic dye laser. Appl Phys Lett 88(9):091101

    Article  Google Scholar 

  • Lermer N, Barnes MD, Kung CY, Whitten WB, Ramsey JM (1997) High efficiency molecular counting in solution: single-molecule detection in electrodynamically focused microdroplet streams. Anal Chem 69(11):2115–2121

    Article  Google Scholar 

  • Li ZY, Zhang ZY, Emery T, Scherer A, Psaltis D (2006a) Single mode optofluidic distributed feedback dye laser. Opt Express 14(2):696–701. http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-696

    Article  Google Scholar 

  • Li ZY, Zhang ZY, Scherer A, Psaltis D (2006b) Mechanically tunable optofluidic distributed feedback dye laser. Opt Express 14(22):10494–10499. http://wwwopticsinfobaseorg/abstractcfm?URI=oe142210494

    Article  Google Scholar 

  • Li ZY, Psaltis D (2007) Optofluidic distributed feedback dye lasers. IEEE J Sel Topics Quantum Electron 13(2):185–193

    Article  Google Scholar 

  • Lin HB, Huston AL, Justus BL, Campillo AJ (1986) Some characteristics of a droplet whispering-gallery-mode laser. Opt Lett 11(10):614–616

    Google Scholar 

  • Lin HB, Eversole JD, Campillo AJ (1990) Vibrating orifice droplet generator for precision optical studies. Rev Sci Instrum 61(3):1018–1023

    Article  Google Scholar 

  • Lin HB, Eversole JD, Campillo AJ (1992a) Spectral properties of lasing microdroplets. J Opt Soc Am B 9:43–50

    MATH  Google Scholar 

  • Lin HB, Eversole JD, Merritt CD, Campillo AJ (1992b) Cavity modified spontaneous-emission rates in liquid microdroplets. Phys Rev A 45:6756–6760

    Article  Google Scholar 

  • Maune B, Loncar M, Witzens J, Scherer A (2004) Liquid-crystal electric tuning of a photonic crystal laser. Appl Phys Lett 85(3):360–362

    Article  Google Scholar 

  • McCall SL, Levi AF, Slusher RE, Pearton SJ, Logan RA (1992) Whispering-gallery mode microdisk lasers. Appl Phys Lett 60:289–291

    Article  Google Scholar 

  • Mekis A, Noeckel JU, Chen G, Stone AD, Chang RK (1995) Ray chaos and Q spoiling in lasing droplets. Phys Rev Lett 75:2682–2685

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114

    Article  Google Scholar 

  • Moon HJ, Chough YT, Kim JB, An KW (2000a) Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser. Appl Phys Lett 76(25):3679–3681

    Article  Google Scholar 

  • Moon HJ, Chough YT, An KW (2000b) Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys Rev Lett 85(15):3161–3164

    Article  Google Scholar 

  • Nockel JU, Stone AD, Chen G, Grossman HL, Chang RK (1996) Directional emission from asymmetric resonant cavities. Opt Lett 21:1609–1611

    Google Scholar 

  • Painter O, Lee RK, Scherer A, Yariv A, O’Brien JD, Dapkus PD, Kim I (1999) Two-dimensional photonic band-gap defect mode laser. Science 284(5421):1819–1821

    Article  Google Scholar 

  • Pendock G, Mackenzie HS, Payne FP (1992) Tapered optical fibre dye laser. Electron Lett 28:149–150

    Article  Google Scholar 

  • Pendock GJ, Mackenzie HS, Payne FP (1993) Dye-lasers using tapered optical fibers. Appl Opt 32(27):5236–5242

    Google Scholar 

  • Periasamy N, Bor Z (1981) Distributed feedback laser action in an optical fiber by evanescent field coupling. Opt Commun 39(5):298–302

    Article  Google Scholar 

  • Periasamy N, Schafer FP (1981) Laser amplification in an optical fiber by evanescent field coupling. Appl Phys 24(3):201–203

    Article  Google Scholar 

  • Peroz C, Galas JC, Le Gratiet L, Chen Y, Shi J (2006) Compact dye laser on a chip fabricated by ultraviolet nanoimprint lithography. Appl Phys Lett 89(24):243109

    Article  Google Scholar 

  • Peterson OG (1979) Dye lasers, methods of experimental physics, vol 15A. Academic, New York, pp 251–359

    Google Scholar 

  • Peterson OG, Webb JP, Mcclolgin WC (1971) Organic dye laser threshold. J Appl Phys 42(5):1917–1928

    Article  Google Scholar 

  • Psaltis D, Quake SR, Yang CH (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681–681

    Article  Google Scholar 

  • Qian SX, Snow JB, Tzeng HM, Chang RK (1986) Lasing droplets: highlighting the liquid-air interface by laser emission. Science 231(4737):486–488

    Article  Google Scholar 

  • Russell P (2003) Photonic crystal fibers. Science 299:358–362

    Article  Google Scholar 

  • Schafer FP (eds) (1990) Dye lasers: topics in applied physics 1, 3rd edn. Springer, Heidelberg

  • Shank CV (1975) Physics of dye lasers. Rev Mod Phys 47(3):649–657

    Article  MathSciNet  Google Scholar 

  • Snavely BB (1969) Flashlamp-excited organic dye lasers. Proc IEEE 57(8):1374–1390

    Article  Google Scholar 

  • Shopova SI, Zhu HY, Fan XD, Zhang P (2007) Optofluidic ring resonator based dye laser. Appl Phys Lett 90:221101

    Article  Google Scholar 

  • Silfvast WT (2004) Laser fundamentals, 2nd edn. Cambridge University Press, Cambridge

  • Sorokin PP, Lankard JR, Moruzzi VL, Hammond EC (1968) Flashlamp-pumped organic-dye lasers. J Chem Phys 48(10):4726–4741

    Article  Google Scholar 

  • Streifer W, Burnham RD, Scifres DR (1976) Radiation losses in distributed feedback lasers and longitudinal mode selection. IEEE J Quantum Electron 12(11):737–739

    Article  Google Scholar 

  • Suzuki M, Yokoyama H, Brorson SD, Ippen EP (1991) Observation of spontaneous emission lifetime change Of dye-containing Langmuir–Blodgett films in optical microcavities. Appl Phys Lett 58(10):998–1000

    Article  Google Scholar 

  • Svelto O (1998) Principles of lasers. 4th edn. Plenum, New York

    Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Article  Google Scholar 

  • Tona M, Kimura M (2000) Novel lasing modes observed in a levitated single dye-doped microdroplet. J Phys Soc Jpn 69(11):3533–3535

    Article  Google Scholar 

  • Tzeng HM, Wall KF, Long MB (1984) Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra. Opt Lett 9:273–275

    Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  • Vahala KJ (2003) Optical microcavities. Nature 424:839–846

    Article  Google Scholar 

  • Vasdekis AE, Town GE, Turnbull GA, Samuel IDW (2007) Fluidic fibre dye lasers. Opt Express 15:3962–3967. http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-7-3962

    Article  Google Scholar 

  • Verpoorte E (2003) Chip vision: optics for microchips. Lab Chip 3(3):42N–52N

    Article  Google Scholar 

  • Vezenov DV, Mayers BT, Conroy RS, Whitesides GM, Snee PT, Chan Y, Nocera DG, Bawendi MG (2005) A low-threshold, high-efficiency microfluidic waveguide laser. J Am Chem Soc 127(25):8952–8953

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 101(34):12434–12438

    Article  Google Scholar 

  • Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Yang J, Guo LJ (2006) Optical sensors based on active microcavities. IEEE J Sel Topics Quantum Electron 12(1):143–147

    Article  MathSciNet  Google Scholar 

  • Yokoyama H (1992) Physics and device applications of optical microcavities. Science 256(5053):66–70

    Article  Google Scholar 

  • Yokoyama H, Brorson SD (1989) Rate equation analysis of microcavity lasers. J Appl Phys 66(10):4801–4805

    Article  Google Scholar 

  • Yokoyama H, Suzuki M, Nambu Y (1991) Spontaneous emission and laser oscillation properties of microcavities containing a dye solution. Appl Phys Lett 58(23):2598–2600

    Article  Google Scholar 

  • Zeidler G (1971) Optical waveguide technique with organic dye lasers. J Appl Phys 42(2):884–886

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Axel Scherer, Zhaoyu Zhang, Teresa Emery and David Erickson for helpful discussions and their collaboration on this project. This research was supported by the DARPA center for optofluidic integration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Psaltis, D. Optofluidic dye lasers. Microfluid Nanofluid 4, 145–158 (2008). https://doi.org/10.1007/s10404-007-0225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0225-9

Keywords

Navigation