Skip to main content
Log in

Paleoenvironment and taphonomy of lower Miocene bivalve and macroid assemblages: the Lagos Biocalcarenite (Lagos-Portimão Formation, southern Portugal)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Between Lagos and Albufeira, the Algarve coast of southern Portugal is marked by outcrops of the lower Miocene Lagos-Portimão Formation (LPF) consisting of yellow sandstone and coarse skeletal-rhodolithic limestone. This contribution focuses on the rhodoliths, their paleoecology, taphonomy, and biological composition, in the Lagos Biocalcarenite, the lower member of the LPF. Special attention is paid to the unusual occurrence of numerous rhodoliths nucleated around articulated bivalve shells, as well as to the nature of their biological interactions and taphonomic features. The calcareous algae of the rhodoliths (Phymatolithon calcareum and Spongites sp.) are commonly interlayered with thin bands of bryozoans and serpulids. Thick beds of non-nucleated spheroidal rhodoliths first appear at approximately 5–6 m above the base of the LPF as a result of a storm event that shifted rhodoliths in a shoreward direction. The bioeroded surface at the top of the Cretaceous Porto de Mós Formation, at the base of the overlying LPF succession, is a wave-cut platform representing the Miocene transgressive surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adey WH, McKibbin D (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnion coralloides Crouan in the Ria de Vigo. Bot Mar 13:100–106

    Article  Google Scholar 

  • Adey WH, MacIntyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84(3):883–904

    Article  Google Scholar 

  • Aguirre J, Braga JC, Bassi D (2017) Rhodoliths and rhodolith beds in the rock record In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds), Rhodolith/Maërl Beds: A Global Perspective, Coastal Research Library, Springer Verlag 15: 105–138

  • Alejandrino A, Puslednik L, Serb JM (2011) Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evol Biol 11:164

    Article  Google Scholar 

  • Allmon WD (1988) Ecology of Recent Turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios 3:284–295

    Article  Google Scholar 

  • Antunes MT, Bizon G, Nascimento A, Pais J (1981) Nouvelles données sur la datation des dépôts miocènes de l’Algarve (Portugal) et l’evolution géologique regionale. Ciências da Terra (UNL) 6:153–168

    Google Scholar 

  • Antunes MT, Pais J (1993) The Neogene of Portugal. Ciências da Terra (UNL) 8:55–64

    Google Scholar 

  • Areschoug JE (1852) Ordo XII. Corallinaceae. In: Agardh JG (ed) Species, Genera, et Ordines Algarum, Vol. 2, Part 2, C.W.K. Gleerup, Lund, pp 506–576

  • Ávila PS, Ramalho R, Habermanng JM, Quartau R, Kroh A, Berning B, Johnson M, Kirby MX, Zanon V, Titschacko J, Goss A, Rebelo AC, Melo C, Madeira P, Cordeiro R, Meireles R, Bagaço L, Hipólito A, Uchman A, Silva CM da, Cachão M, Madeira J (2015) Palaeoecology, taphonomy, and preservation of a lower Pliocene Shell bed (coquina) from a volcanic oceanic island (Santa Maria Island, Azores). Palaeogeogr Palaeoclimatol Palaeoecol 430:57–73

    Article  Google Scholar 

  • Baarli BG, Santos A, Silva CM da, Ledesma-Vázquez J, Mayoral E, Cachão M, Johnson ME (2012) Diverse macroids and rhodoliths from the Upper Pleistocene of Baja California Sur, Mexico. J Coastal Res 28:296–305

    Article  Google Scholar 

  • Baeta M, Galimany E, Ramón M (2016) Growth and reproductive biology of the sea star Astropecten aranciacus (Echinodermata, Asteroidea) on the continental shelf of the Catalan Sea (northwestern Mediterranean). Helgol Mar Res 70:1

    Article  Google Scholar 

  • Bakun A (1978) Guinea current upwelling. Nature 271:147–150

    Article  Google Scholar 

  • Batters EAL (1892) Additional notes on the marine algae of the Clyde sea area. Journal of Botany, British and Foreign 30:170–177

    Google Scholar 

  • Bizzozero G (1885) Flora Venetta Crittogamica. Parte 2. Seminario, Padova

  • Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682

    Article  Google Scholar 

  • Bosence DWJ (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19:71–88

    Google Scholar 

  • Bosence DWJ (1983a) Coralline algal reef frameworks. Journal of the Geological Society London 140:365–376

    Article  Google Scholar 

  • Bosence DWJ (1983b) The occurrence and ecology of Recent rhodoliths––a review. In: Peryt TM (ed) Coated Grains. Springer, Berlin, pp 217–224

    Chapter  Google Scholar 

  • Boucart J, Zbyszewski G (1940) La faune de Cacela en Algarve (Portugal). Comunicações dos Serviços Geológicos de Portugal 31:3–60

    Google Scholar 

  • Brachert TC, Forst MH, Pais JJ, Legoinha P, Reijmer JJC (2003) Lowstand carbonates, highstand sandstones? Sed Geol 155:1–12

    Article  Google Scholar 

  • Braga JC, Bosence DWJ, Steneck RS (1993) New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535–547

    Google Scholar 

  • Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in Southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41

    Article  Google Scholar 

  • Brandano M, Piller WE (2010) Coralline algae, oysters and echinoids: a liaison in rhodolith formation from the Burdigalian of the Latium-Abruzzi Platform (Italy). Int Assoc Sedimentol Spec Publ 42:149–163

    Google Scholar 

  • Bromley RG, Hanken N-M, Asgaard U (1990) Shallow marine bioerosion: preliminary results of an experimental study. Bull Geol Soc Den 38:85–99

    Google Scholar 

  • Bromley RG, Asgaard U (1993) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2:93–116

    Article  Google Scholar 

  • Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The Palaeobiology of Tracefossils. Wiley, Chichester

    Google Scholar 

  • Cachão M, Silva CM da (1992) Neogene paleogeographic evolution of Algarve Basin (Southern Portugal): a two-step model. Prelim Data Gaia 4:39–42

    Google Scholar 

  • Cachão M (1995) Utilização de nanofósseis calcários em biostratigrafia, paleoceanografia e paleoecologia. Aplicações ao Neogénico do Algarve (Portugal) e do Mediterrâneo Ocidental (ODP 653) e à problemática de Coccolithus pelagicus. PhD thesis, University of Lisbon

  • Cachão M, Boski T, Moura D, Dias R, Silva CM da, Santos A, Pimentel N, Cabral J (1998) Proposta de articulação das unidades sedimentares neogénicas e quaternárias do Algarve. Comunicações do Instituto Geológico e Mineiro 84(1):A169–A172

    Google Scholar 

  • Cachão M, Silva CM da (2000) The three main depositional cycles of the Neogene of Portugal. Ciências da Terra (UNL) 14:303–312

    Google Scholar 

  • Cachão M, Silva CM da, Santos AG, Domènech R, Martinell J, Mayoral E (2009) The bioeroded megasurface of Oura (Algarve, S Portugal): implications for the Neogene stratigraphy and tectonic evolution of SW Iberia. Facies 55:213–225

    Article  Google Scholar 

  • Checconi A, Bassi D, Carannante G, Monaco P (2010) Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sed Geol 225:50–56

    Article  Google Scholar 

  • Chukwuone NA, Ukwe CN, Onugu A, Ibe CA (2009) Valuing the Guinea current large marine ecosystem: estimates of direct output impact of relevant marine activities. Ocean Coast Manag 52(3–4):189–196

    Article  Google Scholar 

  • de Gibert JM, Martinell J, Domènech R (1998) Entobia ichnofacies in fossil rockyshores, Lower Pliocene, Northwestern Mediterranean. Palaios 13:476–487

    Article  Google Scholar 

  • de Gibert JM, Domènech R, Martinell J (2007) Bioerosion in shell beds from the Pliocene Roussillon Basin, France: implications for the (macro)bioerosion ichnofacies model. Acta Palaeontologia Polonica 52(4):783–798

    Google Scholar 

  • de Lamarck JBM (1816) Histoire naturelle des animaux sans vertèbres. Tome troisième, Deterville/Verdière

    Google Scholar 

  • Forst MH (2003) Zur Karbonatsedimentologie, Biofazies und sequenzstratigraphischen Architektur eines fossilen Hochenergie-Schelfs aus dem Neogen der Algarve (Miozän, Südportugal). PhD thesis, Johannes Gutenberg-Universität in Mainz

  • Foslie M (1898) Systematical survey of the Lithothamnia. Det Kongelige Norske Videnskabers Skrifer 1898(2):1–7

    Google Scholar 

  • Foslie M (1905) Remarks on northern Lithothamnia. Det Kongelige Norske Videnskabers Skrifer 3:1–138

    Google Scholar 

  • Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207

    Article  Google Scholar 

  • Ghibaudo G, Grandesso P, Massari F, Uchman A (1996) Use of trace fossils in delineating sequence stratigraphic surfaces (Tertiary Venetian Basin, northeastern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 120:261–279

    Article  Google Scholar 

  • Gray JE (1864) Handbook of British Water-Weeds or Algae. R. Hardwicke, London

    Google Scholar 

  • Gutowski J (1984) Sedimentary environment and synecology of macrobenthic assemblages of the marly sands and red-algal limestones in the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologia Polonica 34(3–4):323–339

    Google Scholar 

  • Harvey WH (1849) Nereis Australis. II. Reeve, London, pp 65–124

    Google Scholar 

  • Hottinger L (1983) Neritic macroid genesis, an ecological approach. In: Peryt TM (ed) Coated Grains. Springer-Verlag, Berlin, pp 38–55

    Chapter  Google Scholar 

  • Iryu Y, Bassi D, Woelkerling WJ (2012) Typification and reassessment of seventeen species of coralline red algae (Corallinales and Sporolithales, Rhodophyta) described by W. Ishijima during 1954-1978. J Syst Paleontol 10:171–209

    Article  Google Scholar 

  • Irvine LM, Chamberlain M (1994) Seaweeds of the British Isles. Vol. 1 Rhodophyta, Part 2B Corallinales, Hildenbrandiales. London, HMSO

  • Johnson ME, Baarli BG, Silva CM da, Cachão M, Ramalho RS, Santos A, Mayoral EJ (2016a) Recent rhodolith deposits stranded on the windward shores of Maio (Cape Verde Islands): historical resource for the local economy. J Coast Res 32:735–743

    Article  Google Scholar 

  • Johnson ME, Ledesma-Vázquez J, Ramalho R, Silva CM da, Rebelo AC, Santos A, Baarli BG, Mayoral E, Cachão M (2016b) Taphonomic range and sedimentary dynamics of modern and fossil rhodolith beds: Macaronesian Realm (North Atlantic Ocean). In: Riosmena-Rodríguez R, Nelson W, Aguirre J (eds) Rhodolith/Maërl beds: a global perspective, coastal research library, vol 15. Springer, Berlin, pp 221–261

    Chapter  Google Scholar 

  • Kelly P, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27(4):793–807

    Google Scholar 

  • King PP (1832) Description of the Cirrhipeda, Conchifera and Mollusca, in a collection formed by the officers of H.M.S. Adventure and Beagle employed between the years 1826 and 1830 in surveying the southern coasts of South America, including the Straits of Magalhaens [sic] and the coast of Tierra del Fuego. Zool J 5:332–349

    Google Scholar 

  • Kotizan CB, Simões MG (2006) Taphonomy of recent freshwater molluscan death assemblages, Touro Passo Stream. Southern Brazil. Revista Brasileira de Paleontologia 9(2):243–260

    Article  Google Scholar 

  • Kützing FT (1841) Über die ‘Polipiers calcifères des Lamouroux’. F. Thiele, Nordhausen

    Google Scholar 

  • Lamptey E (2015) Eco-functional benthic biodiversity assemblage patterns in the Guinea Current Large Marine Ecosystem. PhD thesis, University of Ghana

  • Lamouroux JVF (1812) Sur la classification des Polypiers coralligénes non entiérement pierreux. Nouveau Bulletin des Sciences par la Société Philomathique de Paris 3:181–188

    Google Scholar 

  • Linnaeus C (1767) Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 and 2. Holmiae, Laurentii Salvii. Holmiae [Stockholm], Laurentii Salvii, pp. 1–532 [1766] (pp. 533–1327 [1767])

  • Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith, productivity, and growth history at sites of formation and subsequent degradation. J Exp Mar Biol Ecol 150:163–182

    Article  Google Scholar 

  • Marrack EC (1999) The Relationship Between Water Motion and Living Rhodolith Beds in the Southwestern Gulf of California, Mexico. Palaios 14:159–171

    Article  Google Scholar 

  • Moretzsohn F (2014) Cypraeidae: how Well-Inventoried is the Best-Known Seashell Family? American Malacological Bull 32(2):278–289

    Article  Google Scholar 

  • Müller OF (1776) Zoologiae Danicae Prodromus seu Animalium Daniae et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium. Hafniae, Typiis Hallageriis

  • Nebelsick J, Schmid B, Stachowitsch M (1997) The encrustation of fossil and recent sea-urchin tests: ecological and taphonomic significance. Lethaia 30:271–284

    Article  Google Scholar 

  • Pais J, Legoinha P, Elderfield H, Sousa L, Estevens M (2000) The Neogene of Algarve (Portugal). Ciências da Terra (UNL) 14:277–288

    Google Scholar 

  • Pais J, Cunha P, Pereira D, Legoinha P, Dias R, Moura D, Brum A, Kullberg JC, González-Delgado JA (2012) The Paleogene and Neogene of Western Iberia (Portugal). A Cenozoic Record in the European Atlantic Domain. Springer Briefs in Earth Sciences. Springer, Berlin

    Book  Google Scholar 

  • Pallas PS (1766) Elenchus Zoophytorum. P. van Cleef, Hague

    Google Scholar 

  • Penrose D, Woelkerling WJ (1992) A reappraisal of Hydrolithon and its relationship to Spongites (Corallinaceae, Rhodophyta). Phycologia 31:81–88

    Article  Google Scholar 

  • Philippi RA (1844) Descriptiones testaceorum quorundam novorum, maxime chinensium. Zeitschrift für Malakozoologie 1:161–167

    Google Scholar 

  • Pisera A, Studencki W (1989) Middle Miocene rhodoliths from the Korytnica Basin (Southern Poland): environmental significance and palaeontology. Acta Palaeontol Pol 34(4):179–209

    Google Scholar 

  • Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34:151–166

    Article  Google Scholar 

  • Rasser MP, Piller WE (1999) Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J Micropalaeontol 18:67–80

    Article  Google Scholar 

  • Reid RP, MacIntyre IG (1988) Foraminiferal-algal nodules from the Eastern Caribbean: growth history and implications on the value of nodules as palaeoenvironmental indicators. Palaios 3:424–435

    Article  Google Scholar 

  • Rey J (1982) Le Crétacé dans la région de Faro (Algarve, Portugal). Comunicações dos Serviços Geológicos de Portugal 68(2):225–236

    Google Scholar 

  • Rey J, Dinis J, Callapez P, Cunha P (2006) Da rotura continental à margem passiva. Composição e evolução do Cretácico de Portugal, Cadernos de Geologia de Portugal. Instituto Geológico e Mineiro, Lisboa

    Google Scholar 

  • Rivera MG, Riosmena-Rodríguez R, Foster MS (2004) Age and growth of Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Ciencias Marinas 30(1B):235–249

    Article  Google Scholar 

  • Rösler A, Perfectti F, Peña V, Braga JC (2016) Phylogenetic relationships of Corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines. J Phycol 52(3):412–431

    Article  Google Scholar 

  • Santos A, Mayoral E, Silva CM da, Cachão M, Domènech R, Martinell J (2008) Trace fossil assemblages on Miocene rocky shores of southern Iberia. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 431–450

    Chapter  Google Scholar 

  • Santos A, Mayoral E, Silva CM da, Cachão M, Kullberg JC (2010) Trypanites Ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeogr Palaeoclimatol Palaeoecol 292(1–2):35–43

    Article  Google Scholar 

  • Santos A, Mayoral E, Johnson ME, Baarli BG, Silva CM da, Cachão M, Ledesma-Vázquez J (2012) Basalt mounds and adjacent depressions attract contrasting biofacies on a volcanically active Middle Miocene coastline (Porto Santo, Madeira Archipelago, Portugal). Facies 58:573–585

    Article  Google Scholar 

  • Santos A, Mayoral E, Baarli G, Cachão M, Silva CM da, Johnson M (2014) Estructuras de domicilio-equilibrio producidas por Gastrochaenidae (Bivalvia) en el Mioceno medio del sector de Lagos-Albufeira (Algarve, Portugal). In: Royo-Torres R, Verdú FJ, Alcalá L (eds), XXX Jornadas de Paleontología. Sociedad Española de Paleontología, Teruel, Fundamental 24:219–222

  • Santos A, Mayoral E, Silva CM da, Cachão M (2016) Two remarkable examples of Portuguese Neogene bioeroded rocky shores: new data and synthesis. Comunicações Geológicas 103(Especial I):121–130

    Google Scholar 

  • Silva P, Johansen HW (1986) A reappraisal of the order Corallinales (Rhodophyceae). Eur J Phycol 21(3):245–254

    Article  Google Scholar 

  • Silva CM da, Cachão M, Martinell J, Domènech R (1999) Bioerosional evidence of rocky palaeoshores in the Neogene of Portugal. Bull Geol Soc Den 45:156–160

    Google Scholar 

  • Sneed ED, Folk RL (1958) Pebbles in the lower Colorado River, Texas, a study in particle morphogenesis. J Geol 66:114–150

    Article  Google Scholar 

  • Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc 150:141–148

    Article  Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103

    Article  Google Scholar 

  • Teichert S (2014) Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci Rep 4:6972

    Article  Google Scholar 

  • Terrinha P, Rocha R, Rey J, Cachão M, Moura D, Roque C, Martins L, Valadares V, Cabral J, Azevedo MR, Barbero L, Clavijo E, Dias RP, Matias H, Madeira J, da Silva CM, Munhá J, Rebelo L, Ribeiro C, Vicente J, Noiva J, Youbi N, Bensalah MK (2013) A Bacia do Algarve: Estratigrafia, Paleogeografia e Tectónica. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal, Lisboa, II. Escolar Editora, Lisboa, pp 29–166

    Google Scholar 

  • Tunnicliffe V (1982) The role of boring sponges in coral fracture. Colloques Internationaux du C.N.R.S. 291:309–315

    Google Scholar 

  • Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift 39(3):193–211

    Article  Google Scholar 

  • Woelkerling WJ, Irvine LM (1986) The typification and status of Phymatolithon (Corallinaceae, Rhodophyta). Br Phycol J 21:55–80

    Article  Google Scholar 

  • Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293

    Article  Google Scholar 

  • Zamorano JH, Duarte WE, Moreno CA (1986) Predation upon Laternula elliptica (Bivalvia, Anatinidae): a Field Manipulation in South Bay, Antarctica. Polar Biol 6:139–143

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded under Grant CGL2010-15372-BTE from the Spanish Ministry of Science and Innovation to project leader Eduardo Mayoral (University of Huelva). Ana Cristina Rebelo thanks C. Wimmer-Pfeil at Staatliches Museum für Naturkunde Stuttgart in Germany for help with preparation of thin-sections for the study of the Canavial rhodoliths and Michael Rasser for advice on the taxonomy of coralline red algae. The rhodolith material in this contribution was presented by Rebelo in a session on “Atlantic rocky and sandy coastlines” during the conference convened by the Regional Committee on Neogene Atlantic Stratigraphy, held 10–13 July 2017 at the University of the Azores in Ponta Delgada, São Miguel Island, the Azores. Eduardo Mayoral and Ana Santos also acknowledge additional support by Junta de Andalucía (Spanish government) to the Research Group RNM 276 and by the project CGL2015-66835-P (Secretaría de Estado de I + D + i, Spain). Publication supported by project FCT UID/GEO/50019/2019 and Instituto Dom Luiz of geosciences. Last, but not least, the authors would like to thank the reviewer Laura Tomassetti (Sapienza University of Rome) and an anonymous reviewer, as well as the editors of Facies, for their helpful and constructive comments and suggestions that greatly contributed to improving the final version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Marques da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.M., Cachão, M., Rebelo, A.C. et al. Paleoenvironment and taphonomy of lower Miocene bivalve and macroid assemblages: the Lagos Biocalcarenite (Lagos-Portimão Formation, southern Portugal). Facies 65, 6 (2019). https://doi.org/10.1007/s10347-018-0550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0550-3

Keywords

Navigation