Skip to main content

Advertisement

Log in

Intra-annual growth response of adult Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to an experimentally enhanced, free-air ozone regime

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Several findings indicate an impact of ozone on stem diameter growth leaving the question unanswered, if and how the intra-annual growth pattern is changed. In this study the hypotheses are tested, that (1) ozone will alter the absolute growth and (2) alter and shift the period of growth activity within a year. Our data originates from the free air ozone fumigation experiment ‘Kranzberger Forst’ in a mixed stand of Norway spruce and common beech near Freising/Germany. Annual and intra-annual growth reactions of a sample of five adult beech and five spruce trees, exposed to double ambient ozone were examined and compared to the same number of untreated reference trees. Diameter increments were measured with plastic diameter girth bands and high-resolution, automatically logging micro-dendrometers, mounted at breast height (1.3 m). We used the increment data from the growth periods 2000 to 2005. The high-resolution micro-dendrometer data were examined by fitting a Weibull function to the standardized annual growth profiles to obtain curve parameters for statistical tests. We estimated the parameters ‘T’ which represents the point of time, when 63% of the annual diameter increment is performed and the parameter ‘m’, the Weibull module, which was used as an indicator for the span of time needed to complete the annual growth. The statistical significance of these curve parameters, together with the absolute diameter increment, was tested by use of mixed regression models. The analysis of the growth curve parameters revealed a significantly altered intra-annual growth pattern of both species induced by ozone. Spruce under ozone showed reduced absolute annual diameter increment and a preponed growth activity compared to untreated trees. Beech’s absolute diameter increment was not affected under ozone, but its growth activity was delayed. For both species, ozone fumigation did not alter the individual length of the annual growing season. These results are discussed with respect to drought, tree ring anatomy and tree allometry. The study shows that ozone is able to change growth behaviour of trees even if increment losses are not obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant, Cell Environ, pp 1–16

  • Athari S (1980) Untersuchungen über die Zuwachsentwicklung rauchgeschädigter Fichtenbestände. Diss. Forstl. Fak. Georg-August-Universität, Göttingen, 164 p

  • Athari S (1983) Zuwachsvergleich von Fichten mit unterschiedlich starken Schadsymptomen. AFZ 38:653–655

    Google Scholar 

  • Betz GA, Knappe C, Lapierre C, Olbrich M, Welzl G, Langebartels C, Heller W, Sandermann H, Ernst D (2008) Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur J For Res. doi:10.1007/s10342-008-0216-8

  • Blumenröther MC, Löw M, Matyssek R, Oßwald W (2007) Flux-based response of sucrose and starch in leaves of adult beech tress (Fagus sylvatica L.) under chronic free-air ozone fumigation. Plant Biol 9:207–214

    Article  PubMed  Google Scholar 

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005a) Intra-annual variation in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    PubMed  CAS  Google Scholar 

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005b) Intra-annual variation in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660

    PubMed  CAS  Google Scholar 

  • Braun S, Rihm B, Schindler C, Flückinger W (1999) Growth of mature beech in relation to ozone and nitrogen deposition: an epidemiological Approach. Water Air Soil Pollut 116:357–364

    Article  CAS  Google Scholar 

  • Braun S, Schindler C, Rihm B, Flückinger W (2006) Shoot growth of mature Fagus sylvatica and Picea abies in relation to ozone. Environ Pollut 146:1–5

    Google Scholar 

  • Chappelka AH, Samuelson LJ (1997) Ambient ozone effects on forest trees of the eastern United States: a review. New Phytol 139:91–108

    Article  Google Scholar 

  • Deckmyn G, Op de Beeck M, Löw M, Then C, Verbeeck H, Wipfler P, Ceulemans R (2007) Modelling ozone effects on adult beech trees through simulation of defence, damage and repair costs: implementation of the CASIROZ ozone model in the ANAFORE forest model. Plant Biol 9:320–330. doi:10.1055/s-2006-924762

    Article  PubMed  CAS  Google Scholar 

  • Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19:402–408

    Article  Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Quebec (Canada). Trees 17:477–484

    Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variation of Common Beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173:63–78

    Article  Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 39:729–742

    Article  CAS  Google Scholar 

  • Downes GM, Beadle C, Worledge D (1999) Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees 14:102–111

    Google Scholar 

  • Downes GM, Wimmer R, Evans R (2002) Understanding wood formation: gains to commercial forestry through tree-ring research. Dendrochronologia 20(1–2):37–51

    Google Scholar 

  • Elling W (1993) Immissionen im Ursachenkomplex von Tannenschädigung und Tannensterben. Allgemeine Forst- und Jagdzeitung 48(Jg 2):87–95

  • Ferretti M, Calderisi M, Bussotti F (2007) Ozone exposure, defoliation of beech (Fagus sylvatica L.) and visible foliar symptoms on native plants in selected in selected plots o South-Western Europe. Environ Pollut 145:644–651

    Article  PubMed  CAS  Google Scholar 

  • Franz F, Pretzsch H, Foerster W (1990) Untersuchungen zum Jahresgang geschädigter Fichten in Südbayern. Forst und Holz 45:461–466

    Google Scholar 

  • Grams TEE, Anegg S, Häberle K-H, Langebartels C, Matyssek R (1999) Interaction of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107

    Article  CAS  Google Scholar 

  • Grulke NE, Preisler HK, Rose C, Kitsch J, Balduman L (2002) O3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural stands. New Phytol 154:621–631

    Article  CAS  Google Scholar 

  • Häberle K-H, Nunn AJ, Reiter IM, Werner H, Heller W, Bahnweg G, Gayler S, Lütz C, Matyssek R (2008) Variation of defence-related metabolites in the foliage of adult beech and spruce: a conceptual approach to approximating traded-off carbon. Eur J For Res. doi:10.1007/s10342-008-0220-z

  • Herbinger K, Then C, Löw C, Haberer K, Alexous M, Koch N, Remele K, Heerdt C, Grill D, Rennenberg H, Häberle K-H, Matyssek R, Tausz M, Wieser G (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environ Pollut 137:476–482

    Article  PubMed  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Karlsson PE, Medin EL, Wallin G, Sellden G, Skärby L (1997) Effects of ozone and drought stress on the physiology and growth of two clones of Norway spruce (Picea abies). New Phytol 136:265–275

    Article  CAS  Google Scholar 

  • Karlsson PE, Örlander G, Langvall O, Uddling J, Hjorth U, Wiklander K, Areskoug B, Gennfelt P (2006) Negative impact of ozone on the stem basal area increment of mature Norway spruce in south Sweden. For Ecol Manag 232:146–151

    Article  Google Scholar 

  • Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GE, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WJ, McDonald EP, Noormets A, Oksanen E, Parsons FJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur R, Sober A, Sober J, Jones WS, Anttonen S, Vapaavuori E, Mankovska B, Heilman W, Isebrands JG (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol 17:289–304

    Article  Google Scholar 

  • Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impacts in trees. Environ Pollut 115:373–393

    Article  CAS  Google Scholar 

  • Landolt W, Bühlmann U, Bleuler P, Bucher JB (2000) Ozone exposure-response relationship for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Environ Pollut 109:473–478

    Article  PubMed  CAS  Google Scholar 

  • Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees 20(5):539–548

    Article  Google Scholar 

  • Marenco A, Gouget H, Nedelec P, Pages JP, Karcher F (1994) Evidence of a long-term increase in tropospheric ozone from the Pic du Midi data series: consequences: positive radiative forcing. J Geophys Res 99:16617–16632

    Article  CAS  Google Scholar 

  • Matyssek R, Innes JL (1999) Ozone—a risk factor for trees and forests in Europe? Water Air Soil Pollut 116:199–226

    Article  CAS  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    CAS  Google Scholar 

  • Matyssek R, Thiec DL, Löw M, Dizengremel P, Nunn AJ, Häberle K-H (2006) Interactions between drought and O3 stress in forest trees. Plant Biol 8:11–17

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Oßwald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007) Synopsis of the CASIROZ case study: carbon sink strenght of Fagus sylvatica L. in a changing environment—experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180

    Article  PubMed  CAS  Google Scholar 

  • Novak K, Schaub M, Fuhrer J, Skelly JM, Hug C, Londolt W, Bleuler P, Kräuchi K (2005) Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive wood plant species. Environ Pollut 136:33–45

    Article  PubMed  CAS  Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton (Austria) 42:105–109

    CAS  Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369

    Article  PubMed  CAS  Google Scholar 

  • Offenthaler I, Hietz P, Richter H (2001) Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees 15:215–221

    Article  Google Scholar 

  • Oksanen E, Saalem A (1999) Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (Betula pendula Roth). Plant, Cell Environ 22:1401–1411

    Article  CAS  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Google Scholar 

  • Pretzsch H (1989) Untersuchungen an kronengeschädigten Kiefern (Pinus sylvestris L.) in Nordost-Bayern. Forstarchiv 60(Jg 2): 62–69

    Google Scholar 

  • Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21

    Article  Google Scholar 

  • Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst”. Forstw Cbl 117:241–257

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria. ISBN:3-900051-07-0. http://www.R-project.org

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10(29):290–300

    Article  Google Scholar 

  • Samuelson L, Kelly JM (2001) Scaling ozone effects from seedlings to forest trees. New Phytol 149:21–41

    Article  CAS  Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research. Berne, Stuttgart, Vienna, Haupt, 609 p

  • Schweingruber FH, Kontic R, Winkler-Seifert A (1983) Eine jahrringanalytische Studie zum Nadelbaumsterben in der Schweiz. Bericht der Eidgenössischen Anstalt für das forstliche Versuchswesen 253:29

    Google Scholar 

  • Seifert T, Pretzsch H, Bücking M (2003) “Mittelwaldfichten” aus dem Hochwald? Teil I: Gestalt und Wachstum langkroniger Fichten. Forst und Holz 58(13/14):420–426

    Google Scholar 

  • Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impacts of ozone on forests: a European perspective. New Phytol 139:109–122

    Article  Google Scholar 

  • Somers GL, Chappelka AH, Rosseau P, Renfo JR (1998) Empirical evidence of growth decline related to visible ozone injury. For Ecol Manag 104:129–137

    Article  Google Scholar 

  • Sterba, H. (1996) Forest Decline and Growth Trends in Central Europe. In: Spiecker H, Mielikäinen K, Köhl M (eds) Skovsgaard JPGrowth trends in european forests. Springer, New York pp 149–165

  • Stevenson DS, Johnson CE, Collins WJ, Derwent RG, Shiney KP, Edwards JM (1998) Evolution of tropospheric ozone radiative forcing. Geophys Res Lett 25(20):3819–3822

    Article  Google Scholar 

  • Stockwell WR, Kramm G, Scheel H-E, Mohnen VA, Seiler W (1997) Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone, vol 127. Heidelberg, Berlin, New York, p 400

  • Stribley GH, Ashmore MR (2002) Quantitative changes in twig growth patterns of young woodland beech (Fagus sylvatica L.) in relation to climate and ozone pollution over 10 years. For Ecol Manag 157:191–204

    Article  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  CAS  Google Scholar 

  • Vollenweider P, Woodcock H, Keltry MJ, Hofer R-M (2003) Reduction of stem growth and site dependency of leaf injury in Massachusetts black cherries exhibiting ozone symptoms. Environ Pollut 125:467–480

    Article  PubMed  CAS  Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest Ecosystems. Concepts and Management, Academic press, INC. Hartcourt Brace Jovanovich, Publishers, Orlando, p 340

    Google Scholar 

  • Wieser G, Manning WJ, Tausz M, Bytnerowicz A (2006) Evidence for potential impacts of ozone on Pinus cembra L. at mountain sites in Europe: An overview. Environ Pollut 139:53–58

    Article  PubMed  CAS  Google Scholar 

  • Wimmer R, Downes GM, Evans R (2002) High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524

    Article  Google Scholar 

  • Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biol 06:611–618

    Article  Google Scholar 

  • Werner H, Fabian P (2002) Free-air fumigation of mature trees: a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut Res 9:117–121

    Article  Google Scholar 

  • Yang RC, Kozak A, Smith JHG (1978) The potential of Weibull-type functions as flexible growth curves. Can J For Res 8:424–431

    Article  Google Scholar 

  • Zweifel R, Item H, Häsler R (2000) Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees 15:50–57

    Article  Google Scholar 

  • Zweifel R, Item H, Häsler R (2001) Link between diurnal stem radius changes and tree water relations. Tree Physiol 21:869–877

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the German Research foundation (DFG) for providing funds for forest growth and yield research as part of the collaborative research centre SFB 607 “Growth and Parasite Defence”. Additionally they wish to express their gratitude to H. Werner and C. Heerdt for their steady care for the ozone fumigation and monitoring system in the “Kranzberger Forst” experimental station and to Gerhard Schütze for recording tree dimensions. Additionally the authors would like to thank Mr. Iain Cottontail for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Wipfler.

Additional information

Communicated by A. Roloff.

This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands".

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wipfler, P., Seifert, T., Biber, P. et al. Intra-annual growth response of adult Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to an experimentally enhanced, free-air ozone regime. Eur J Forest Res 128, 135–144 (2009). https://doi.org/10.1007/s10342-008-0255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-008-0255-1

Keywords

Navigation