Skip to main content
Log in

Review on Implementation of Multivariate Approach for Forced Degradation Study and Impurity Profiling with Regulatory Considerations

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Understanding of shelf-life, expiry periods, degradation kinetics, stability indications, and impurity profiling is of major concern. The present review focuses on the quality-by-design (QbD) approach for optimizing forced degradation conditions for impurity profiling. Analytical issues occurring at the last stage of long-term stability studies are related to unpredicted impurities, which can disturb monitoring of characterized impurities and raise many regulatory issues. The QbD multivariate approach was evaluated within the framework of the liquid chromatography (LC) method. The initial investigation is concerned with critical process parameters which can impact on critical quality attributes. Selection of primary and secondary parameters to define a design space with the help of a polynomial equation and Derringer’s desirability value is considered next. Sorting impurities using the multivariate design-of-experiments (DoE) approach can also be beneficial to reduce time and cost, whilst providing a robust process. Much emphasis is given to application of Q8 and Q9 International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines to improve quality, safety, and efficacy studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATPP:

Analytical target product profile

AQbD:

Analytical quality by design

C-CAD:

Corona charged aerosol detector

CPP:

Critical process parameter

CQA:

Critical quality attribute

DoE:

Design of experiments

DS:

Design space

DAHHB:

Diethylamino hydroxybenzoyl hexyl benzoate

FMEA:

Failure mode effect analysis

FMECA:

Failure mode, effects, and criticality analysis

ELSD:

Evaporative light scattering detector

FTA:

Fault tree analysis

GLC:

Gas–liquid chromatography

HACCP:

Hazard analysis and critical control points

ICH:

International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use

LOD:

Limit of detection

LOQ:

Limit of quantification

LC–MS/MS:

Liquid chromatography–tandem mass spectroscopy

MP:

Methyl paraben

MEKC:

Micellar electrokinetic chromatography

MFAT:

Multiple factors at a time

OCT:

Octinoxate

OFAT:

One factor at a time

PHA:

Primary hazard analysis

PP:

Propyl paraben

QTPP:

Quality target product profile

QbD:

Quality by design

QbT:

Quality by testing

TPP:

Target product profile

USFDA:

United States Food and Drug Administration

References

  1. ICH H tripartite guideline (2005) Stability testing of new drug substances and products Q1A (R2). http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 18 Dec 2016

  2. Klick S, Muijselaar PG, Waterval J et al (2005) Toward a generic approach for stress testing of drug substances and drug products. Pharm Technol 29:48–66

    Google Scholar 

  3. Alsante KM, Martin L, Baertschi SW (2003) A stress testing benchmarking study. Pharm Technol 27:60–72

    CAS  Google Scholar 

  4. Singh S, Bakshi M (2000) Guidance on conduct of stress tests to determine inherent stability of drugs. Pharm Technol 4:1–14. (http://www.pharmaportal.com)

  5. ICH H tripartite guideline (2005) Validation of analytical procedures: methodology Q2(R1). http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 18 Dec 2016

  6. Sonawane S, Gide P (2012) An experimental design approach for the forced degradation studies and development of a stability-indicating LC method for eplerenone in tablets. J Liq Chromatogr Relat Technol 34:2020–2031. doi:10.1080/10826076.2011.582913

    Article  CAS  Google Scholar 

  7. Sonawane S, Gide P (2011) Optimization of forced degradation using experimental design and development of a stability-indicating liquid chromatographic assay method for rebamipide in bulk and tablet dosage form. Sci Pharm 79:85–96. doi:10.3797/scipharm.1011-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh S, Junwal M, Modhe G et al (2013) Forced degradation studies to assess the stability of drugs and products. TrAC 49:71–88. doi:10.1016/j.trac.2013.05.006

    Article  CAS  Google Scholar 

  9. Kurmi M, Kumar S, Singh B, Singh S (2014) Implementation of design of experiments for optimization of forced degradation conditions and development of a stability-indicating method for furosemide. J Pharm Biomed Anal 96:135–143. doi:10.1016/j.jpba.2014.03.035

    Article  CAS  PubMed  Google Scholar 

  10. Hubert C, Lebrun P, Houari S et al (2014) Improvement of a stability-indicating method by quality-by-design versus quality-by-testing: a case of a learning process. J Pharm Biomed Anal 88:401–409. doi:10.1016/j.jpba.2013.09.026

    Article  CAS  PubMed  Google Scholar 

  11. ICH H tripartite guideline (2006) Q3B (R2): impurities in new drug products. doi:10.1017/CBO9781107415324.004

  12. ICH H tripartite guideline (1999) Specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances Q6A. doi:10.1017/CBO9781107415324.004

  13. United States FDA (2000) Guidance for industry: analytical procedures and methods validation, chemistry, manufacturing, controls and documentation. 33 p

  14. Sangshetti JN, Deshpande M, Zaheer Z et al (2014) Quality by design approach: regulatory need. Arab J Chem. doi:10.1016/j.arabjc.2014.01.025

    Article  Google Scholar 

  15. ICH H tripartite guideline (2005) Pharmaceutical development Q8(R2). http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 18 Dec 2016

  16. ICH H tripartite guideline (2005) Quality risk management Q9. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 18 Dec 2016

  17. ICH H tripartite guideline (2005) Pharmaceutical quality system Q10. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 18 Dec 2016

  18. Bakshi M, Singh S (2002) Development of validated stability-indicating assay methods—critical review. J Pharm Biomed Anal 28:1011–1040. doi:10.1016/S0731-7085(02)00047-X

    Article  CAS  PubMed  Google Scholar 

  19. Maggio RM, Vignaduzzo SE, Kaufman TS (2013) Practical and regulatory considerations for stability-indicating methods for the assay of bulk drugs and drug formulations. TrAC 49:57–70. doi:10.1016/j.trac.2013.05.008

    Article  CAS  Google Scholar 

  20. Ahuja SS (2007) Assuring quality of drugs by monitoring impurities. Adv Drug Deliv Rev 59:3–11. doi:10.1016/j.addr.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  21. Connors KA, Amidon GL, Stella VJ (1986) Chemical stability of pharmaceuticals. Wiley, New York

    Google Scholar 

  22. Orlandini S, Pinzauti S, Furlanetto S (2013) Application of quality by design to the development of analytical separation methods. Anal Bioanal Chem 405(2–3):443–450

    Article  CAS  PubMed  Google Scholar 

  23. Debrus B, Guillarme D, Rudaz S (2013) Improved quality-by-design compliant methodology for method development in reversed-phase liquid chromatography. J Pharm Biomed Anal 84:215–223. doi:10.1016/j.jpba.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  24. Rozet E, Ziemons E, Marini RD et al (2012) Quality by design compliant analytical method validation. Anal Chem 84:106–112. doi:10.1021/ac202664s

    Article  CAS  PubMed  Google Scholar 

  25. Patel MN, Kothari CS (2016) Multivariate approaches for simultaneous determination of avanafil and dapoxetine by UV chemometrics and HPLC-QbD in binary mixtures and pharmaceutical product. J AOAC Int 99:649–663

    Article  CAS  Google Scholar 

  26. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley. doi: 10.1177/014662168000400313

  27. Plackett RL, Burman JP (2016) The design of optimum multifactorial experiments. Oxford University Press, Oxford (On behalf of Biometrika Trust)

    Google Scholar 

  28. Monks KE, Rieger H-J, Molnár I (2011) Expanding the term “Design Space” in high performance liquid chromatography (I). J Pharm Biomed Anal 56:874–879. doi:10.1016/j.jpba.2011.04.015

    Article  CAS  PubMed  Google Scholar 

  29. Monks K, Molnar I, Rieger HJ et al (2012) Quality by design: multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation. J Chromatogr A 1232:218–230. doi:10.1016/j.chroma.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  30. Lebrun P, Boulanger B, Debrus B et al (2013) A Bayesian design space for analytical methods based on multivariate models and predictions. J Biopharm Stat 23:1330–1351. doi:10.1080/10543406.2013.834922

    Article  PubMed  Google Scholar 

  31. Khamanga SM, Walker RB (2011) The use of experimental design in the development of an HPLC-ECD method for the analysis of captopril. Talanta 83:1037–1049. doi:10.1016/j.talanta.2010.11.025

    Article  CAS  PubMed  Google Scholar 

  32. Singh S, Handa T, Narayanam M et al (2012) A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products. J Pharm Biomed Anal 69:148–173. doi:10.1016/j.jpba.2012.03.044

    Article  CAS  PubMed  Google Scholar 

  33. Gorog S (2000) Identification and determination of impurities in drugs. Elsevier Science, Amsterdam

    Google Scholar 

  34. Gorog S, Herenyi B (1987) The use of high-performance liquid chromatography with diode-array UV detection for estimating impurity profiles of steroid drugs. J Chromatogr 400:177–186. doi:10.1016/0920-5861(87)80033-0

    Article  CAS  PubMed  Google Scholar 

  35. Görög S (2003) Chemical and analytical characterization of related organic impurities in drugs. Anal Bioanal Chem 377:852–862. doi:10.1007/s00216-003-2140-6

    Article  CAS  PubMed  Google Scholar 

  36. Slonecker PJ, Li X, Ridgway TH, Dorsey JG (1996) Informational orthogonality of two-dimensional chromatographic separations. Anal Chem 68:682–689. doi:10.1021/ac950852v

    Article  CAS  PubMed  Google Scholar 

  37. Saavedra L, Huidobro AL, Garcia A et al (2006) CE as orthogonal technique to HPLC for alprazolam degradation product identification. Electrophoresis 27:2360–2366. doi:10.1002/elps.200500882

    Article  CAS  PubMed  Google Scholar 

  38. Reilly J, Saeed M (1998) Capillary electrochromatography as an alternative separation technique to high-performance liquid chromatography and capillary zone electrophoresis for the determination of drug related impurities in Lilly compound LY300164. J Chromatogr A 829:175–186. doi:10.1016/S0021-9673(98)00886-3

    Article  CAS  Google Scholar 

  39. Wang X, Li W, Rasmussen HT (2005) Orthogonal method development using hydrophilic interaction chromatography and reversed-phase high-performance liquid chromatography for the determination of pharmaceuticals and impurities. J Chromatogr A 1083:58–62. doi:10.1016/j.chroma.2005.05.082

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Zhang H, Liu O, Donovan B (2011) Development of an orthogonal method for mometasone furoate impurity analysis using supercritical fluid chromatography. J Chromatogr A 1218:2311–2319. doi:10.1016/j.chroma.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  41. Reddy GM, Bhaskar BV, Reddy PP et al (2007) Structural identification and characterization of potential impurities of pantoprazole sodium. J Pharm Biomed Anal 43:201–210. doi:10.1016/j.jpba.2006.10.017

    Article  CAS  Google Scholar 

  42. Brenna E, Frigoli S, Fronza G et al (2007) Isolation and characterisation of a phenolic impurity in a commercial sample of duloxetine. J Pharm Biomed Anal 43:1573–1575. doi:10.1016/j.jpba.2006.11.026

    Article  CAS  PubMed  Google Scholar 

  43. Halmos Z, Szantay C, Brlik J et al (1996) Estimation of impurity profiles of drugs and related materials part 15. Identification of minor impurities in cimetidine. J Pharm Biomed Anal 15:1–5. doi:10.1016/0731-7085(96)01815-8

    Article  CAS  PubMed  Google Scholar 

  44. Alsante K, Hatajik T, Lohr L, Sharp T (2001) Isolation and identification of process related impurities and degradation products from pharmaceutical drug candidates, Part I. Am Pharm Rev 4:70–78

    CAS  Google Scholar 

  45. Sigvardson KW, Adams SP, Barnes TB et al (2002) The isolation and identification of a toxic impurity in XP315 drug substance. J Pharm Biomed Anal 27:327–334. doi:10.1016/S0731-7085(01)00550-7

    Article  CAS  PubMed  Google Scholar 

  46. Lohr LL, Sharp TR, Alsante KM, Hatajik TD (2001) Isolation and identification of process related impurities and degradation products from pharmaceutical drug candidates: part II. The role of NMR and mass spectrometry. Am Pharm Rev 4:104–113

    CAS  Google Scholar 

  47. Łaniewski K, Vågerö M, Forsberg E et al (2004) Complementary use of gas chromatography-mass spectrometry, gas chromatography-atomic emission detection and nuclear magnetic resonance for identification of pharmaceutically related impurities of unknown structures. J Chromatogr A 1027:93–102. doi:10.1016/j.chroma.2003.10.034

    Article  CAS  PubMed  Google Scholar 

  48. Mehta S, Shah RP, Priyadarshi R, Singh S (2010) LC and LC–MS/TOF studies on stress degradation behaviour of candesartan cilexetil. J Pharm Biomed Anal 52:345–354. doi:10.1016/j.jpba.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  49. Liu DQ, Wu L, Sun M, MacGregor PA (2007) On-line H/D exchange LC–MS strategy for structural elucidation of pharmaceutical impurities. J Pharm Biomed Anal 44:320–329. doi:10.1016/j.jpba.2007.01.019

    Article  CAS  PubMed  Google Scholar 

  50. Cheng JYK, Chan MF, Chan TW, Hung MY (2006) Impurity profiling of ecstasy tablets seized in Hong Kong by gas chromatography-mass spectrometry. Forensic Sci Int 162:87–94. doi:10.1016/j.forsciint.2006.02.055

    Article  CAS  PubMed  Google Scholar 

  51. Ahuja S (2004) Overview: isolation and characterization of impurities. Sep Sci Technol 5:1–25

    Google Scholar 

  52. Smith RJWML (2008) Analysis of drug impurities. Wiley-Blackwell, Oxford

    Google Scholar 

  53. Bedse G, Kumar V, Singh S (2009) Study of forced decomposition behavior of lamivudine using LC, LC–MS/TOF and MSn. J Pharm Biomed Anal 49:55–63. doi:10.1016/j.jpba.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  54. Narayanam M, Handa T, Sharma P et al (2014) Critical practical aspects in the application of liquid chromatography-mass spectrometric studies for the characterization of impurities and degradation products. J Pharm Biomed Anal 87:191–217. doi:10.1016/j.jpba.2013.04.027

    Article  CAS  PubMed  Google Scholar 

  55. Fabre H, Fell AF (1992) Comparison of techniques for peak purity testing of cephalosporins. J Liq Chromatogr 15:3031–3043. doi:10.1080/10826079208016368

    Article  CAS  Google Scholar 

  56. Tol T, Kadam N, Raotole N et al (2015) A simultaneous determination of related substances by high performance liquid chromatography in a drug product using quality by design approach. J Chromatogr A. doi:10.1016/j.chroma.2015.12.080

    Article  Google Scholar 

  57. Orlandini S, Pasquini B, Stocchero M et al (2014) An integrated quality by design and mixture-process variable approach in the development of a capillary electrophoresis method for the analysis of almotriptan and its impurities. J Chromatogr A 1339:200–209. doi:10.1016/j.chroma.2014.02.088

    Article  CAS  PubMed  Google Scholar 

  58. Orlandini S, Pasquini B, Caprini C et al (2016) Enantioseparation and impurity determination of ambrisentan using cyclodextrin-modified micellar electrokinetic chromatography: visualizing the design space within quality by design framework. J Chromatogr A. doi:10.1016/j.chroma.2016.06.082

    Article  PubMed  Google Scholar 

  59. Karmarkar S, Yang X, Garber R et al (2014) Quality by design (QbD) based development and validation of an HPLC method for amiodarone hydrochloride and its impurities in the drug substance. J Pharm Biomed Anal 100:167–174. doi:10.1016/j.jpba.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  60. Furlanetto S, Orlandini S, Pasquini B et al (2013) Quality by design approach in the development of a solvent-modified micellar electrokinetic chromatography method: finding the design space for the determination of amitriptyline and its impurities. Anal Chim Acta 802:113–124. doi:10.1016/j.aca.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  61. Gavin PF, Olsen BA (2008) A quality by design approach to impurity method development for atomoxetine hydrochloride (LY139603). J Pharm Biomed Anal 46:431–441. doi:10.1016/j.jpba.2007.10.037

    Article  CAS  PubMed  Google Scholar 

  62. Abiramasundari A, Joshi A, Joshi R et al (2015) Impact of ternary solvent system in stability-indicating assay method of Bambuterol: design of experiments approach. J Chromatogr Sci. doi:10.1093/chromsci/bmv137

    Article  PubMed  Google Scholar 

  63. Pasquini B, Orlandini S, Carini C et al (2016) Cyclodextrin- and solvent-modified micellar electrokinetic chromatography for the determination of captopril, hydrochlorothiazide and their impurities: a quality by design approach. Talanta. doi:10.1016/j.talanta.2016.07.038

    Article  PubMed  Google Scholar 

  64. Pantovic J, Malenovic A, Vemic A et al (2015) Development of liquid chromatographic method for the analysis of dabigatran etexilate mesilate and its ten impurities supported by quality-by-design methodology. J Pharm Biomed Anal 111:7–13. doi:10.1016/j.jpba.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  65. Murthy MV, Krishnaiah C, Srinivas K et al (2013) Development and validation of RP-UPLC method for the determination of darifenacin hydrobromide, its related compounds and its degradation products using design of experiments. J Pharm Biomed Anal 72:40–50. doi:10.1016/j.jpba.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  66. Boussès C, Ferey L, Vedrines E, Gaudin K (2015) Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products. J Pharm Biomed Anal. doi:10.1016/j.jpba.2015.07.003

    Article  PubMed  Google Scholar 

  67. Orlandini S, Pasquini B, Caprini C et al (2016) A comprehensive strategy in the development of a cyclodextrin-modified microemulsion electrokinetic chromatographic method for the assay of diclofenac and its impurities: mixture-process variable experiments and quality. J Chromatogr A. doi:10.1016/j.chroma.2016.09.013

    Article  PubMed  Google Scholar 

  68. Tumpa A, Miladinović T, Rakić T et al (2016) Quality by design determination of diclofenac potassium and its impurities by high-performance liquid chromatography. Anal Lett 49:445–457. doi:10.1080/00032719.2015.1075131

    Article  CAS  Google Scholar 

  69. Schmidt AH, Molnár I (2013) Using an innovative quality-by-design approach for development of a stability indicating UHPLC method for ebastine in the API and pharmaceutical formulations. J Pharm Biomed Anal 78–79:65–74. doi:10.1016/j.jpba.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  70. Krishna MV, Dash RN, Jalachandra Reddy B et al (2013) Quality by design (QbD) approach to develop HPLC method for eberconazole nitrate: application oxidative and photolytic degradation kinetics. J Saudi Chem Soc. doi:10.1016/j.jscs.2012.12.001

    Article  Google Scholar 

  71. Jovanovic M, Raki T, Tumpa A, Jančić-Stojanović B (2015) Analysis quality by design approach in the development of hydrophilic interaction liquid chromatographic method for the analysis of iohexol and its impurities. J Pharm Biomed Anal 110:42–48. doi:10.1016/j.jpba.2015.02.046

    Article  CAS  PubMed  Google Scholar 

  72. Yadav NK, Raghuvanshi A, Sharma G et al (2015) QbD-based development and validation of a stability-indicating HPLC method for estimating ketoprofen in bulk drug and proniosomal vesicular system. J Chromatogr Sci. doi:10.1093/chromsci/bmv151

    Article  PubMed  Google Scholar 

  73. Roy C, Chakrabarty J (2013) Development and validation of a stability indicating RP-HPLC method for the determination of two sun protection factors (Koptrizon and Tinosorb S) in topical pharmaceutical formulations using experimental designs. ISRN chromatography. doi:10.1155/2013/506923

  74. Salman SL, Vinayak A (2014) Quality-by-design approach to stability indicating method development for Linagliptin drug product

  75. Sonawane S, Gide P (2012) Application of experimental design for the optimization of forced degradation and development of a validated stability-indicating LC method for luliconazole in bulk and cream formulation. Arab J Chem. doi:10.1016/j.arabjc.2012.03.019

    Article  Google Scholar 

  76. Roy C, Chakrabarty J (2014) Quality by design-based development of a stability-indicating RP-HPLC method for the simultaneous determination of methylparaben, propylparaben, diethylamino hydroxybenzoyl hexyl benzoate, and octinoxate in topical pharmaceutical formulation. Sci Pharm 82:519–539. doi:10.3797/scipharm.1312-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garg LK, Reddy VS (2013) Quality by design: design of experiments approach prior to the validation of a stability-indicating HPLC method for montelukast. Chromatographia. doi:10.1007/s10337-013-2509-4

    Article  Google Scholar 

  78. Barmpalexis P, Kanaze FI, Georgarakis E (2009) Developing and optimizing a validated isocratic reversed-phase high-performance liquid chromatography separation of nimodipine and impurities in tablets using experimental design methodology. J Pharm Biomed Anal 49:1192–1202. doi:10.1016/j.jpba.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  79. Beg S, Sharma G, Katare OP et al (2015) Development and validation of a stability-indicating liquid chromatographic method for estimating olmesartan medoxomil using quality by design. J Chromatogr Sci. doi:10.1093/chromsci/bmu165

    Article  PubMed  Google Scholar 

  80. Manranjan VC, Adav DSY, Ogia HAJ, Hauhan PLC (2013) Design of experiment (DOE) utilization to develop a simple and robust reversed phase HPLC technique for related substances estimation of omeprazole formulations. Sci Pharm 81:1043–1056. doi:10.3797/scipharm.1306-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jadhav SB, Kumar CK, Bandichhor R, Bhosale PN (2016) Development of RP UPLC–TOF/MS, stability indicating method for omeprazole and its related substances by applying two level factorial design; and identification and synthesis of non-pharmacopoeial impurities. J Pharm Biomed Anal 118:370–379. doi:10.1016/j.jpba.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  82. Vemic A, Rakic T, Malenovic A, Medenica M (2015) Chaotropic salts in liquid chromatographic method development for the determination of pramipexole and its impurities following quality-by-design principles. J Pharm Biomed Anal 102:314–320. doi:10.1016/j.jpba.2014.09.031

    Article  CAS  PubMed  Google Scholar 

  83. Bianchini RM, Castellano PM, Kaufman TS (2009) Development and validation of an HPLC method for the determination of process-related impurities in pridinol mesylate, employing experimental designs. Anal Chim Acta 654:141–147. doi:10.1016/j.aca.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  84. Karmarkar S, Garber R, Genchanok Y et al (2011) Quality by design (QbD) based development of a stability indicating HPLC method for drug and impurities. J Chromatogr Sci 49:439–446

    Article  CAS  PubMed  Google Scholar 

  85. Mustafa G, Ahuja A, Baboota S, Ali J (2013) Box-Behnken supported validation of stability-indicating high performance thin-layer chromatography (HPTLC) method: an application in degradation kinetic profiling of ropinirole. Saudi Pharm J 21:93–102. doi:10.1016/j.jsps.2011.11.006

    Article  PubMed  Google Scholar 

  86. Reddy GR, Reddy PR, Jyothi PS (2014) Development of a stability-indicating stereoselective method for quantification of the enantiomer in the drug substance and pharmaceutical dosage form of rosuvastatin calcium by an enhanced approach. Sci Pharm 83:279–296. doi:10.3797/scipharm.1410-09

    Article  CAS  Google Scholar 

  87. Krier F, Brion M, Debrus B et al (2011) Optimisation and validation of a fast HPLC method for the quantification of sulindac and its related impurities. J Pharm Biomed Anal 54:694–700. doi:10.1016/j.jpba.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  88. Khan A, Imam SS, Aqil M et al (2016) Design of experiment based validated stability indicating RP-HPLC method of temozolomide in bulk and pharmaceutical dosage forms. Beni Suef Univ J Basic Appl Sci. doi:10.1016/j.bjbas.2015.11.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charmy S. Kothari.

Ethics declarations

Funding

The authors declare that no funding was received for this review article.

Conflict of interest

All authors declare that they have no conflicts of interest.

Human and animal rights statement

This article does not contain any studies with animal or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.N., Kothari, C.S. Review on Implementation of Multivariate Approach for Forced Degradation Study and Impurity Profiling with Regulatory Considerations. Chromatographia 81, 105–125 (2018). https://doi.org/10.1007/s10337-017-3393-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3393-0

Keywords

Navigation