Skip to main content
Log in

GC–MS Coupled with Hollow-Fiber Drop-to-Drop Solvent Microextraction for Determination of Antidepressants Drugs in Human Blood Sample

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple, rapid and sensitive hollow-fiber with drop-to-drop solvent microextraction (HF-DDSME) combined with gas chromatography–mass spectrometry (GC–MS) has been successfully developed for extraction and determination of antidepressants drugs (AD) in blood sample. The parameters that affect the separation and preconcentration of AD from sample solution were investigated. Calibration curve obtained for three AD were in the range of 100–1,000; 150–1,200; and 80–1,200 ng mL−1 for amitriptyline, imipramine, and promethazine, respectively, with correlation coefficient (R 2) between 0.990 and 0.997. The limit of detection (LOD) obtained for amitriptyline, imipramine and promethazine was 25, 30 and 18 ng mL−1, respectively. The developed method has been successfully applied for the determination of AD concentration in blood sample, and the recoveries for the spiked samples were in the range of 92.3–97.6%. The sample preparation procedure is very simple, effective and virtually solvent-free, and indicated to be a good alternative for the traditional liquid–liquid extraction. Finally, the proposed method was successfully applied for the determination of drug concentration of AD in human blood sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kataky R, Palmer S, Parker D, Spurling D (1997) Electroanalysis 9:1267–1272

    Article  CAS  Google Scholar 

  2. Linde K, Ramirex G, Mulrow CD, Pauls A, Weidenhammer W, Melchart D (1996) Bri Med J 313:253–258

    CAS  Google Scholar 

  3. Andrade C, Sandarsh S, Chethan KB, Nagesh KS (2010) J Clin Psychiatry 71:1565–1575

    Article  Google Scholar 

  4. Cohen S, Kuhn KU, Strater B, Scherbaum N, Weig W (2010) Nervenarzt 81:1129–1137

    Article  CAS  Google Scholar 

  5. Wheeler Vega JA, Mortimer AM, Tyson PJ (2003) J Clin Psychiatry 64:568–574

    Article  Google Scholar 

  6. Yazdi AS, Razavi N, Yazdinejad SR (2008) Talanta 75:1293–1299

    Article  CAS  Google Scholar 

  7. Winecker RE (2010) Methods Mol Biol 603:45–56

    Article  CAS  Google Scholar 

  8. Kollroser M, Schober C (2002) Therapeutic Drug Mon 24:537–544

    Article  CAS  Google Scholar 

  9. Silva BJG, Queiroz RHC, Wueiroz MEC (2007) J Anal Toxicol 31:313–320

    CAS  Google Scholar 

  10. Coulter C, Taruc M, Tuyay J (2010) Moore C. J Anal Toxicol 34:64–72

    CAS  Google Scholar 

  11. Hasselstrom J (2011) J Chromatogr B Analyt Technol Biomed Life Sci 879:123–128

    Article  CAS  Google Scholar 

  12. Uddin MN, Samanidou VF, Papadoyannis IN (2011) Bioanalysis 3:97–118

    Article  CAS  Google Scholar 

  13. El-Yazbi A, Korany MA, Bedair M (2008) J Clin Pharm Therapeutics 10:373–377

    Article  Google Scholar 

  14. Ferancova A, Korgova E, Miko R, Labuda J (2000) J Electroanal Chem 492:74–77

    Article  CAS  Google Scholar 

  15. Marczenko Z (1986) Separation and spectrophotometric determination of elements. Ellis Hardwood, London

    Google Scholar 

  16. Psillakis E, Kalogerakis N (2003) Trend Anal Chem 22:565–574

    Article  CAS  Google Scholar 

  17. Jeannot MA, Cantwell FF (1996) Anal Chem 68:2236–2240

    Article  CAS  Google Scholar 

  18. Xiao Q, Hu B, Yu C, Xia L, Jiang Z (2006) Talanta 69:848–855

    Article  CAS  Google Scholar 

  19. Jeannot MA, Cantwell FF (1997) Anal Chem 69:235–239

    Article  CAS  Google Scholar 

  20. Shrivas K, Wu HF (2007) Rapid Commun Mass Spectrom 21:3103–3108

    Article  CAS  Google Scholar 

  21. Shrivas K, Wu HF (2007) J Mass Spectrom 42:1637–1644

    Article  CAS  Google Scholar 

  22. Pedersen-Bjergaard S, Rasmussen KE (1999) Anal Chem 71:2650–2656

    Article  CAS  Google Scholar 

  23. Shen G, Lee HK (2002) Anal Chem 74:648–654

    Article  CAS  Google Scholar 

  24. Zhao L, Lee HK (2002) Anal Chem 74:2486–2492

    Article  CAS  Google Scholar 

  25. Shrivas K, Wu HF (2007) Anal Chim Acta 605:53–158

    Article  Google Scholar 

  26. Shrivas K, Wu HF (2007) J Chromatogr A 1170:9–14

    Article  CAS  Google Scholar 

  27. Agrawal K, Wu HF (2007) Rapid Commun Mass Spectrom 21:3352–3356

    Article  CAS  Google Scholar 

  28. Braggio S, Barnaby RJ, Grossi P, Cugola M (1996) J Pharmacet Biomed Anal 14:375–388

    Article  CAS  Google Scholar 

  29. Peters FT, Drummer OH, Musshoff F (2007) Forensic Sci Int 165:216–224

    Article  CAS  Google Scholar 

  30. Guidance for industry-Bioanalytical method validation (2001) US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh Shrivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapadia, K., Shrivas, K. & Upadhyay, L.S.B. GC–MS Coupled with Hollow-Fiber Drop-to-Drop Solvent Microextraction for Determination of Antidepressants Drugs in Human Blood Sample. Chromatographia 74, 437–442 (2011). https://doi.org/10.1007/s10337-011-2096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2096-1

Keywords

Navigation