Skip to main content

Advertisement

Log in

Age and clutch size variation in Dusky Flycatcher nest survival

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Examination of spatial and temporal factors that influence nest survival can provide insight into habitat selection, reproductive decisions (e.g., clutch size), population dynamics, and conservation requirements for species. We used nest survival data for the Dusky Flycatcher Empidonax oberholseri to examine several factors that may influence nesting success. Our prediction was that the number of nest initiations would be positively associated with period nest survival. We used a model selection framework and found that nesting success was a function of clutch size and a cubic effect of age. Clutches with one, two, three, and four eggs had period survival rates of 0, 0.05, 0.33, and 0.49, respectively. Daily survival rates decreased from the onset of egg-laying and increased during the later stages of incubation before remaining relatively constant through the later portions of the nestling stage. Model-selection criterion provided support for a date effect on daily survival (i.e., daily nest survival declined across the nesting season) although the 95% confidence interval for the estimate included zero. We found that the majority of nest initiations occurred early in the nest season and declined across the season as period nest survival declined. Our prediction concerning nest survival was partially supported. In addition, we found substantial positive associations between clutch size and nest survival. While low daily survival rates for clutches with one or two eggs suggested that individuals may have reduced reproductive effort in response to nest predation risk, we did not find strong evidence that individuals reduced their clutch sizes in subsequent nest attempts. Alternative predictions, including the preferential settlement of higher quality individuals (e.g., those with the ability to lay full clutches to replace depredated nests) into high-quality habitat and differences in behavior patterns (e.g., number of visits to provision nestlings), may provide more consistent explanations for these patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arlt D, Pärt T (2007) Nonideal breeding habitat selection: a mismatch between preference and fitness. Ecology 88:792–801. doi:10.1890/06-0574

    PubMed  Google Scholar 

  • Bibby CJ, Burgess ND, Hill DA (1992) Bird census techniques. Academic Press, San Diego

    Google Scholar 

  • Both C (1998) Experimental evidence for density dependence of reproduction in great tits. J Anim Ecol 67:667–674. doi:10.1046/j.1365-2656.1998.00228.x

    Google Scholar 

  • Both C, Visser ME (2000) Breeding territory size affects fitness: an experimental study on competition at the individual level. J Anim Ecol 69:1021–1030. doi:10.1046/j.1365-2656.2000.00458.x

    Google Scholar 

  • Braden GT, McKernan RL, Powell SM (1997) Association of within-territory vegetation characteristics and fitness components of California Gnatcatchers. Auk 114:601–609

    Google Scholar 

  • Budnik JM, Thompson FRIII, Ryan MR (2002) Effect of habitat characteristics on the probability of parasitism and predation of Bell’s vireo nests. J Wildl Manage 66:232–239. doi:10.2307/3802889

    Google Scholar 

  • Burhans DE, Thompson FRIII (1998) Effects of time and nest-site characteristics on concealment of songbird nests. Condor 100:663–672. doi:10.2307/1369747

    Google Scholar 

  • Burhans DE, Thompson FRIII (2001) Relationship of songbird nest concealment to nest fate and flushing behavior of adults. Auk 118:237–242. doi:10.1642/0004-8038(2001)118[0237:ROSNCT]2.0.CO;2

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: an information-theoretic approach. Springer, New York

    Google Scholar 

  • Chalfoun AD, Ratnaswamy MJ, Thompson FRIII (2002) Songbird nest predators in forest-pasture edge and forest interior in a fragmented landscape. Ecol Appl 12:858–867

    Google Scholar 

  • Cresswell W (1997a) Nest predation rates and nest detectability in different stages of breeding in blackbirds Turdus merula. J Avian Biol 28:296–302. doi:10.2307/3676942

    Google Scholar 

  • Cresswell W (1997b) Nest predation: the relative effects of nest characteristics, clutch size and parental behavior. Anim Behav 53:93–100. doi:10.1006/anbe.1996.0281

    Google Scholar 

  • Daunt F, Wanless S, Harris MP, Monaghan P (1999) Experimental evidence that age-specific reproductive success is independent of environmental effects. Proc R Soc Lond B Biol Sci 266:1489–1493. doi:10.1098/rspb.1999.0805

    Google Scholar 

  • Davis SK, Brigham RM, Shaffer TL, James PC (2006) Mixed-grass prairie passerines exhibit weak and variable responses to patch size. Auk 123:807–821. doi:10.1642/0004-8038(2006)123[807:MPPEWA]2.0.CO;2

    Google Scholar 

  • Dinsmore SJ, White GC, Knopf FL (2002) Advanced techniques for modeling avian nest survival. Ecology 83:3476–3488

    Google Scholar 

  • Doligez B, Clobert J (2003) Clutch size reduction as a response to increased nest predation rate in the collared flycatcher. Ecology 84:2582–2588. doi:10.1890/02-3116

    Google Scholar 

  • Eggers S, Griesser M, Nystrand M, Ekman J (2006) Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proc R Soc Lond B Biol Sci 273:701–706. doi:10.1098/rspb.2005.3373

    Google Scholar 

  • Filliater TS, Breitwisch R, Nealen PM (1994) Predation on northern cardinal nests: does choice of nest site matter? Condor 96:761–768. doi:10.2307/1369479

    Google Scholar 

  • Fontaine JJ, Martin TE (2006a) Habitat selection responses of parents to offspring predation risk: an experimental test. Am Nat 168:811–818. doi:10.1086/508297

    CAS  PubMed  Google Scholar 

  • Fontaine JJ, Martin TE (2006b) Parent birds assess nest predation risk and adjust their reproductive strategies. Ecol Lett 9:428–434. doi:10.1111/j.1461-0248.2006.00892.x

    CAS  PubMed  Google Scholar 

  • Franklin AB, Anderson DR, Gutiérrez RJ, Burnham K (2000) Climate, habitat quality, and fitness in northern spotted owl populations in northwestern California. Ecol Monogr 70:539–590

    Google Scholar 

  • Grant TA, Shaffer TL, Madden EM, Pietze PJ (2005) Time-specific variation in passerine nest survival: new insights into old questions. Auk 122:661–672. doi:10.1642/0004-8038(2005)122[0661:TVIPNS]2.0.CO;2

    Google Scholar 

  • Grant TA, Madden EM, Shaffer TL, Pietz PJ, Berkey GB, Kadrmas NJ (2006) Nest survival of clay-colored and vesper sparrows in relation to woodland edge in mixed-grass prairies. J Wildl Manage 70:691–701. doi:10.2193/0022-541X(2006)70[691:NSOCAV]2.0.CO;2

    Google Scholar 

  • Haskell DG (1999) The effect of predation on begging-call evolution in nesting wood warblers. Anim Behav 57:893–901. doi:10.1006/anbe.1998.1053

    CAS  PubMed  Google Scholar 

  • Hazler KR (2004) Mayfield logistic regression: a practical approach for analysis of nest survival data. Auk 121:707–716. doi:10.1642/0004-8038(2004)121[0707:MLRAPA]2.0.CO;2

    Google Scholar 

  • Hazler KR, Amacher AJ, Lancia RA, Gerwin JA (2006) Factors influencing acadian flycatcher nesting success in an intensively managed forest landscape. J Wildl Manage 70:532–538. doi:10.2193/0022-541X(2006)70[532:FIAFNS]2.0.CO;2

    Google Scholar 

  • Högstedt G (1980) Evolution of clutch size in birds: adaptive variation in relation to territory quality. Science 210:1148–1150. doi:10.1126/science.210.4474.1148

    PubMed  Google Scholar 

  • Holmes RT, Marra PP, Sherry TW (1996) Habitat-specific demography of breeding black-throated blue warblers (Dendroica caerulescens): implications for population dynamics. J Anim Ecol 65:183–195. doi:10.2307/5721

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Kelly JP (1993) The effect of nest predation on habitat selection by dusky flycatchers in limber pine-juniper woodland. Condor 95:83–93. doi:10.2307/1369389

    Google Scholar 

  • Kroll AJ (2004) Habitat selection and use by the dusky flycatcher (Empidonax oberholseri) at multiple scales: implications for habitat-based methods for population viability analysis. Wildlife Biology Program, University of Montana, Missoula

  • Kroll AJ, Haufler JB (2007) Evaluating habitat quality for the dusky flycatcher. J Wildl Manage 71:14–22. doi:10.2193/2005-452

    Google Scholar 

  • Leech SM, Leonard ML (1997) Begging and the risk of predation in nestling birds. Behav Ecol 8:644–646. doi:10.1093/beheco/8.6.644

    Google Scholar 

  • Lloyd JD, Martin TE (2005) Reproductive success of chestnut-collared longspurs in native and exotic grassland. Condor 107:363–374. doi:10.1650/7701

    Google Scholar 

  • Martin TE (1995) Avian life history evolution in relation to nest sites, nest predation, and food. Ecol Monogr 65:101–127. doi:10.2307/2937160

    Google Scholar 

  • Martin TE (1996) Fitness costs of resource overlap among coexisting bird species. Nature 380:338–340. doi:10.1038/380338a0

    CAS  Google Scholar 

  • Martin TE (1998) Are microhabitat preferences of coexisting species under selection and adaptive? Ecology 79:656–670

    Google Scholar 

  • Martin TE, Bassar RD, Bassar SK, Fontaine JJ, Lloyd P, Mathewson HA, Niklison AM, Chalfoun AD (2006) Life-history and ecological correlates of geographic variation in egg and clutch mass among passerine species. Evolution 60:390–398

    PubMed  Google Scholar 

  • Martin TE, Geupel GR (1993) Nest-monitoring plots: methods for locating nests and monitoring success. J Field Ornithol 64:507–519

    Google Scholar 

  • Martin TE, Ghalambor C (1999) Males helping females during incubation. I. Required by microclimate or constrained by nest predation? Am Nat 153:131–139. doi:10.1086/303153

    PubMed  Google Scholar 

  • Martin TE, Roper JJ (1988) Nest predation and nest-site selection of a western population of the Hermit Thrush. Condor 90:51–57. doi:10.2307/1368432

    Google Scholar 

  • Martin TE, Scott J, Menge C (2000) Nest predation increases with parental activity: separating nest site and parental activity effects. Proc R Soc Lond B Biol Sci 267:2287–2293. doi:10.1098/rspb.2000.1281

    CAS  Google Scholar 

  • Mayfield HF (1975) Suggestions for calculating nesting success. Wilson Bull 87:456–466

    Google Scholar 

  • Mitchell WA, Brown JS (1990) Density-dependent harvest rates by optimal foragers. Oikos 57:180–190. doi:10.2307/3565938

    Google Scholar 

  • Nagy LR, Holmes RT (2005) Food limits annual fecundity of a migratory songbird: an experimental study. Ecology 86:675–681. doi:10.1890/04-0155

    Google Scholar 

  • Olendorf R, Robinson SK (2000) Effectiveness of nest defense in the Acadian flycatcher Empidonax virescens. Ibis 142:365–371. doi:10.1111/j.1474-919X.2000.tb04432.x

    Google Scholar 

  • Pärt T (2001) Experimental evidence of environmental effects on age-specific reproductive success: the importance of resource quality. Proc R Soc Lond B Biol Sci 268:2267–2271. doi:10.1098/rspb.2001.1803

    Google Scholar 

  • Peak RG, Thompson FRIII, Shaffer TL (2004) Factors affecting songbird nest survival in riparian forests in midwestern agricultural landscapes. Auk 121:726–737. doi:10.1642/0004-8038(2004)121[0726:FASNSI]2.0.CO;2

    Google Scholar 

  • Petit LJ, Petit DR (1996) Factors governing habitat selection by prothonotary warblers: field tests of the Fretwell–Lucas models. Ecol Monogr 66:367–387. doi:10.2307/2963523

    Google Scholar 

  • Rastogi AD, Zanette L, Clinchy M (2006) Food availability affects diurnal nest predation and adult antipredator behaviour in song sparrows, Melospiza melodia. Anim Behav 72:933–940. doi:10.1016/j.anbehav.2006.03.006

    Google Scholar 

  • Rodenhouse NL, Holmes RT (1992) Results of experimental and natural food reductions for breeding black-throated blue warblers. Ecology 73:357–372. doi:10.2307/1938747

    Google Scholar 

  • Roos S (2002) Functional responses, seasonal decline, and landscape differences in nest predation risk. Oecologia 133:608–615

    PubMed  Google Scholar 

  • Rotella JJ, Dinsmore SJ, Shaffer JA (2004) Modeling nest-survival data: a comparison of recently developed methods that can be implemented in MARK and SAS. Anim Biodivers Conserv 27:187–205

    Google Scholar 

  • Rowe L, Ludwig D, Schluter D (1994) Time, condition, and the seasonal decline of avian clutch size. Am Nat 143:698–722. doi:10.1086/285627

    Google Scholar 

  • SAS Institute (2004) The SAS system for Windows, ver. 9.1. SAS Institute, Cary

    Google Scholar 

  • Schmidt KA, Whelan CJ (1999a) Nest placement and mortality: is nest predation a random event in space and time? Condor 101:916–920. doi:10.2307/1370089

    Google Scholar 

  • Schmidt KA, Whelan CJ (1999b) Nest predation on woodland songbirds: when is nest predation density dependent? Oikos 87:65–74. doi:10.2307/3546997

    Google Scholar 

  • Sedgwick JA (1993) Dusky Flycatcher (Empidonax oberholseri). No. 78. In: Poole A, Gill F (eds) The birds of North America. The Academy of Natural Sciences/The American Ornithologists’ Union, Philadelphia/Washington

    Google Scholar 

  • Shaffer TL (2004) A unified approach to analyzing nest success. Auk 121:526–540. doi:10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2

    Google Scholar 

  • Sieving KE, Willson MF (1998) Nest predation and avian species diversity in northwestern forest understory. Ecology 79:2391–2402

    Google Scholar 

  • Slagsvold T (1984) Clutch size variation of birds in relation to nest predation: on the cost of reproduction. J Anim Ecol 53:945–953. doi:10.2307/4669

    Google Scholar 

  • Sockman KW (1997) Variation in life-history traits and nest-site selection affects risk of nest predation in the California Gnatcatcher. Auk 114:324–332

    Google Scholar 

  • Sockman KW, Sharp PJ, Schwabl H (2006) Orchestration of avian reproductive effort: an integration of the ultimate and proximate bases for flexibility in clutch size, incubation behavior, and yolk androgen deposition. Biol Rev Camb Philos Soc 81:629–666. doi:10.1017/S1464793106007147

    PubMed  Google Scholar 

  • Stamps JA (1990) The effect of contender pressure on territory size and overlap in seasonally territorial species. Am Nat 135:614–632. doi:10.1086/285065

    Google Scholar 

  • Steele R, Pfister RD, Ryker RA, Kittams JA (1981) Forest habitat types of central Idaho. U.S. Department of Agriculture, Forest Service, Idaho Falls

  • Van Noordwijk AJ, McCleery RH, Perrins CM (1995) Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J Anim Ecol 64:451–458. doi:10.2307/5648

    Google Scholar 

  • Visser ME, Holleman LJM, Gienapp P (2006) Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147:164–172. doi:10.1007/s00442-005-0299-6

    PubMed  Google Scholar 

  • Winkler DW, Allen PE (1996) The seasonal decline in tree swallow clutch size: physiological constraint or strategic adjustment? Ecology 77:922–932. doi:10.2307/2265512

    Google Scholar 

  • Winter M, Johnson DH, Shaffer JA (2005) Variability in vegetation effects on density and nesting success of grassland birds. J Wildl Manage 69:185–197. doi:10.2193/0022-541X(2005)069<0185:VIVEOD>2.0.CO;2

    Google Scholar 

  • Zanette L, Doyle P, Trémont SM (2000) Food shortage in small fragments: evidence from an area-sensitive passerine. Ecology 81:1654–1666

    Google Scholar 

  • Zanette L, Clinchy M, Smith JNM (2006) Food and predators affect egg production in song sparrows. Ecology 87:2459–2467. doi:10.1890/0012-9658(2006)87[2459:FAPAEP]2.0.CO;2

    PubMed  Google Scholar 

Download references

Acknowledgments

The Boise Cascade Corporation provided the funding to undertake this research. We thank G. Roloff, B. Kernohan, D. New, and C. Clay of the Boise Cascade Corporation for their assistance. We thank K. Zarbock, J. Kolar, J. King, M. Mathias, H. Montag, and N. Camberos for their work in Idaho. T. Shaffer provided the code to run the goodness-of-fit test. J. Citta and four anonymous reviewers made comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Kroll.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroll, A.J., Haufler, J.B. Age and clutch size variation in Dusky Flycatcher nest survival. J Ornithol 150, 409–417 (2009). https://doi.org/10.1007/s10336-008-0353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-008-0353-3

Keywords

Navigation