Skip to main content
Log in

Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology?

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The fossil record reveals that seed plant leaves evolved from ancestral lateral branch systems. Over time, the lateral branch systems evolved to become determinate, planar and eventually laminar. Considering their evolutionary histories, it is instructive to compare the developmental genetics of shoot apical meristems (SAMs) and leaves in extant seed plants. Genetic experiments in model angiosperm species have assigned functions of meristem maintenance, specification of stem cell identity, boundary formation, polarity establishment and primordium initiation to specific genes. Investigation of roles of the same or homologous genes during leaf development has revealed strikingly similar functions in leaves compared to SAMs. Specifically, the marginal blastozone that characterizes many angiosperm leaves appears to function in a manner mechanistically similar to the SAM. We argue here that the similarities may be homologous due to descent from ancestral roles in an ancestral shoot system. Molecular aspects of SAM and leaf development in gymnosperms is largely neglected and could provide insight into seed plant leaf evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563–1570

    PubMed  CAS  Google Scholar 

  • Aida M, Vernoux T, Furutani M, Traas J, Tasaka M (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129:3965–3974

    PubMed  CAS  Google Scholar 

  • Avery GS (1933) Structure and development of the tobacco leaf. Am J Bot 20:565–592

    Article  Google Scholar 

  • Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831

    Google Scholar 

  • Beerling DJ, Fleming AJ (2007) Zimmermann’s telome theory of megaphyll leaf evolution: a molecular and cellular critique. Curr Opin Plant Biol 10:4–12

    Article  PubMed  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  CAS  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Scarpella E, Prusinkiewicz P (2007) Towards the systems biology of auxin-transport-mediated patterning. Trends Plant Sci 12:151–159

    Article  PubMed  CAS  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha N (2002) Homologies in leaf form inferred from KNOX1 gene expression during development. Science 296:1858–1860

    Article  PubMed  CAS  Google Scholar 

  • Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835–1839

    Article  PubMed  CAS  Google Scholar 

  • Bower FO (1884) On the comparative morphology of the leaf in the vascular cryptograms and gymnosperms. Philos Trans R Soc Lond 175:565–615

    Article  Google Scholar 

  • Bower FO (1935) Primitive land plants. MacMillan, London

    Google Scholar 

  • Boyce CK (2007) Mechanisms of laminar growth in morphologically convergent leaves and flower petals. Int J Plant Sci 168:1151–1156

    Article  Google Scholar 

  • Boyce CK, Knoll AH (2002) Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology 28:70–100

    Article  Google Scholar 

  • Brand A, Shirding N, Shleizer S, Ori N (2007) Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato. Planta 226:941–951

    Article  PubMed  CAS  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    Article  PubMed  CAS  Google Scholar 

  • Candela H, Johnston R, Gerhold A, Foster T, Hake S (2008) The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell 20:2073–2087

    Article  PubMed  CAS  Google Scholar 

  • Champagne C, Ashton N (2001) Ancestry of KNOX genes revealed by bryophyte (Physcomitrella patens) homologs. New Phytol 150:23–36

    Article  CAS  Google Scholar 

  • Chen JJ, Janssen BJ, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Dengler NG, Tsukaya H (2001) Leaf morphogenesis in dicotyledons: current issues. Int J Plant Sci 162:459–464

    Article  Google Scholar 

  • Dolan L, Poethig RS (1998) Clonal analysis of leaf development in cotton. Am J Bot 85:315–321

    Article  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419

    Article  PubMed  CAS  Google Scholar 

  • Doyle JA (1998) Phylogeny of vascular plants. Annu Rev Ecol Syst 29:567–599

    Article  Google Scholar 

  • Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20:2293–2306

    Article  PubMed  CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-Zip and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL (2004) Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131:2997–3006

    Article  PubMed  CAS  Google Scholar 

  • Fletcher LC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2006) Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Curr Biol 16:1911–1917

    Article  PubMed  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2007) The ancestral developmental tool kit of land plants. Int J Plant Sci 168:1–35

    Article  CAS  Google Scholar 

  • Floyd SK, Zalewski CS, Bowman JL (2006) Evolution of Class III homeodomain-leucine zipper genes in streptophytes. Genetics 173:373–388

    Article  PubMed  CAS  Google Scholar 

  • Foster AS (1938) Structure and growth of the shoot apex in Ginkgo biloba. Bull Torrey Bot Club 65:531–556

    Article  Google Scholar 

  • Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030

    Article  PubMed  CAS  Google Scholar 

  • Galtier J (1981) Structures foliaires de fougeres er pteridospermales du Carbonifere inferieur et leur signification evolutive. Palaeontographica B 180:1–38

    Google Scholar 

  • Gensel PG (1984) A new Lower Devonian plant and the early evolution of leaves. Nature 309:785–787

    Article  Google Scholar 

  • Gifford EM, Corson GE (1971) Shoot apex in seed plants. Bot Rev 37:143–229

    Article  CAS  Google Scholar 

  • Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20:1217–1230

    Article  PubMed  CAS  Google Scholar 

  • Golz JF, Roccaro M, Kuzoff R, Hudson A (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131:3661–3670

    Article  PubMed  CAS  Google Scholar 

  • Guo MJ, Thomas J, Collins G, Timmermans MCP (2008) Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell 20:48–58

    Article  PubMed  CAS  Google Scholar 

  • Hagemann W, Gleissberg S (1996) Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Syst Evol 199:121–152

    Article  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 38:942–947

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961

    Article  PubMed  CAS  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Hibara K, Karim MR, Takada S, Taoka KI, Furutani M, Aida M, Tasaka M (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946–2957

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Nitasaka E (2006) The FEATHERED gene is required for polarity establishment in lateral organs especially flowers of the Japanese morning glory (Ipomoea nil). Plant Mol Biol 62:913–925

    Article  PubMed  CAS  Google Scholar 

  • Izhaki A, Bowman JL (2007) KANADI and class IIIHD-zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  PubMed  CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of land plants: a cladistic study. Smithsonian Institution Press, Washington

    Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19:473–484

    Article  PubMed  CAS  Google Scholar 

  • Kumaran MK, Bowman JL, Sundaresan V (2002) YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14:2761–2770

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Barton MK (1998) The development of apical embryonic pattern in Arabidopsis. Development 125:3027–3035

    PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto N, Okada K (2001) A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Gene Dev 15:3355–3364

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Mc Arthur ICS, Steeves TA (1972) An experimental study of vascular differentiation in Geum chiloense Balbis. Bot Gaz 133:276–287

    Article  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    PubMed  CAS  Google Scholar 

  • McConnell J, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  PubMed  CAS  Google Scholar 

  • Mundry M, Stutzel T (2004) Morphogenesis of leaves and cones of male short-shoots of Ginkgo biloba L. Flora 199:437–452

    Google Scholar 

  • Nardmann J, Ji JB, Werr W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131:2827–2839

    Article  PubMed  CAS  Google Scholar 

  • Nath U, Crawford BCW, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407

    Article  PubMed  CAS  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  PubMed  CAS  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    Article  PubMed  CAS  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Pham T, Sinha N (2003) Role of KNOX genes in shoot development of Welwitschia mirabilis. Int J Plant Sci 164:333–343

    Article  CAS  Google Scholar 

  • Phelps-Durr TL, Thomas J, Vahab P, Timmermans MCP (2005) Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 17:2886–2898

    Article  PubMed  CAS  Google Scholar 

  • Poethig RS (1997) Leaf morphogenesis in flowering plants. Plant Cell 9:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Poethig RS, Sussex IM (1985) The cellular parameters of leaf development in Tobacco—a clonal analysis. Planta 165:170–184

    Article  Google Scholar 

  • Prigge MJ, Clark SE (2006) Evolution of the class III HD-Zip gene family in land plants. Evol Dev 8:350–361

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  PubMed  CAS  Google Scholar 

  • Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667

    Article  PubMed  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt B, Hanggi E, Muller S, Bauch M, Wyrzykowska J, Kerstetter R, Poethig S, Fleming AJ (2007) Restoration of DWF4 expression to the leaf margin of a dwf4 mutant is sufficient to restore leaf shape but not size: the role of the margin in leaf development. Plant J 52:1094–1104

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566

    Article  PubMed  CAS  Google Scholar 

  • Sanders HL (2007) Developmental changes in the evolution of fundamental plant organography. PhD Thesis, College of Arts and Sciences, Ohio University

  • Sanders H, Rothwell GW, Wyatt SE (2009) Key morphological alterations in the evolution of leaves. Int J Plant Sci 170:860–868

    Article  Google Scholar 

  • Sano R, Juarez CM, Hass B, Sakakibara K, Ito M, Banks JA, Hasebe M (2005) KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. Evol Dev 7:69–78

    Article  PubMed  CAS  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    Article  PubMed  CAS  Google Scholar 

  • Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Scheckler SE (1976) Ontogeny of progymnosperms I. Shoots of Upper Devonian Aneurophytales. Can J Bot 54:202–219

    Article  Google Scholar 

  • Scheckler SE, Skog JE, Banks HP (2006) Langoxylon asterochlaenoideum Stockmans: anatomy and relationships of a fern-like plant from the Middle Devonian of Belgium. Rev Palaeobot Palyno 142:193–217

    Article  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Schuetz M, Berleth T, Mattsson J (2008) Multiple MONOPTEROS-dependent pathways are involved in leaf initiation. Plant Physiol 148:870–880

    Article  PubMed  CAS  Google Scholar 

  • Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128:1771–1783

    PubMed  CAS  Google Scholar 

  • Serbet R, Rothwell GW (1992) Characterizing the most primitive seed ferns. I. A reconstruction of Elkinsia polymorpha. Int J Plant Sci 153:602–621

    Article  Google Scholar 

  • Shou-Gang H, Beck CB (1993) Further observations on Eophyllophyton bellum from the Lower Devonian (Siegenian) of Yunnan, China. Paleaeontographica 230:27–41

    Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    PubMed  CAS  Google Scholar 

  • Singer SD, Ashton NW (2007) Revelation of ancestral roles of KNOX genes by a functional analysis of Physcomitrella homologues. Plant Cell Rep 26:2039–2054

    Article  PubMed  CAS  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge University Press, New York

    Google Scholar 

  • Sundas-Larsson A, Svenson M, Liao H, Engstrom P (1998) A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proc Natl Acad Sci USA 95:15118–15122

    Article  PubMed  CAS  Google Scholar 

  • Sussex IM (1951) Experiments on the cause of dorsiventrality in leaves. Nature 167:651–652

    Article  PubMed  CAS  Google Scholar 

  • Tomescu AMF (2009) Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci 14:5–12

    Article  PubMed  CAS  Google Scholar 

  • Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genomics 277:457–468

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H, Uchimiya H (1997) Genetic analyses of the formation of the serrated margin of leaf blades in Arabidopsis: combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules. Mol Gen Genet 256:231–238

    Article  PubMed  CAS  Google Scholar 

  • Veit B (2009) Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol 69:397–408

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  PubMed  CAS  Google Scholar 

  • Waites R, Hudson A (1995) phantastica—a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Wardlaw CW (1946a) Experimental and analytical studies of pteridophytes IX. The effect of removing leaf primordia on the development of Angiopteris evecta Hoffm. Ann Bot Lond 10:223–235

    Google Scholar 

  • Wardlaw CW (1946b) Experimental and analytical studies of pteridophytes VII. Stelar morphology: the effect of defoliation on the stele of Osmunda and Todea. Ann Bot Lond 9:97–107

    Google Scholar 

  • Watanabe K, Okada K (2003) Two discrete cis elements control the abaxial side-specific expression of the FILAMENTOUS FLOWER gene in Arabidopsis. Plant Cell 15:2592–2602

    Article  PubMed  CAS  Google Scholar 

  • Weir I, Lu JP, Cook H, Causier B, Schwarz-Sommer Z, Davies B (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131:915–922

    Article  PubMed  CAS  Google Scholar 

  • Wochok ZS, Sussex IM (1973) Morphogenesis in Selaginella—auxin transport in stem. Plant Physiol 51:646–650

    Article  PubMed  CAS  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15:1566–1571

    Article  PubMed  CAS  Google Scholar 

  • Young BS (1954) The effects of leaf primordia on differentiation in the stem. New Phytol 53:445–460

    Article  Google Scholar 

Download references

Acknowledgments

We apologize to those researchers whose work we were unable to cite due to space limitations. For those whose work is cited, we assume full responsibility for any errors in interpretation or presentation. We thank Stuart Gardner for rendering Fig. 1a. The authors’ research is funded by the Australian Research Council (DP0771232, FF0561326), the United States National Science Foundation (IOB-0515435) and Monash University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Bowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floyd, S.K., Bowman, J.L. Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology?. J Plant Res 123, 43–55 (2010). https://doi.org/10.1007/s10265-009-0256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0256-2

Keywords

Navigation