Skip to main content

Advertisement

Log in

Lymphocyte subpopulation and dendritic cell phenotyping during antineoplastic therapy in human solid tumors

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Patients with cancer show variable levels of immunosuppression at the time of the presentation, and cytotoxic antineoplastic therapy is the primary contributor to the clinical immunodeficiency often observed during the course of the disease. In both hematological and solid tumors, this phenomenon is primarily related to the T-cell depletion associated with inhibition of dendritic cell ability to induce both primary and secondary T- and B-cell responses. Complete restoration of immunocompetence following antineoplastic therapy implicates the progressive recovery of various cell subpopulations, and it is a complex process that also depends on the type, the dose, the scheduling, and the associations of the employed drugs. In the era of target therapies, several antiangiogenic drugs are increasingly used in combination with standard chemotherapy in the treatment of advanced solid tumors. Their clinical efficacy has been recently related not only to the specific antiangiogenic properties but also to an indirect hypothetical effect on the host immune system. In the present work, we have reviewed the most recent information regarding (1) the capacity of standard antineoplastic therapy to induce and maintain an immunodeficiency in patients with solid tumors and (2) the influence of the antiangiogenic treatment in association with standard chemotherapy on lymphocyte and dendritic cell subsets and the possible resulting additional antitumor mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Formenti SC (2010) Immunological aspects of local radiotherapy: clinical relevance. Discov Med 9:119–124

    PubMed  Google Scholar 

  2. Fens MH, Storm G, Schiffelers RM (2010) Tumor vasculature as target for therapeutic intervention. Expert Opin Investig Drugs. doi:10.1517/13543784.2010.52

  3. Welch S, Spithoff K, Rumble RB, Maroun J (2010) Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: a systematic review. Ann Oncol 21:1152–1162

    Article  PubMed  CAS  Google Scholar 

  4. Winkeljohn DL (2008) Review of panitumumab: a targeted therapy. Clin J Oncol Nurs 12:30–32

    Article  PubMed  Google Scholar 

  5. Catalano MG, Poli R, Pugliese M, Fortunati N, Boccuzzi G (2010) Emerging molecular terapie of advanced thyroid cancer. Mol Aspects Med 31:215–226

    Article  PubMed  CAS  Google Scholar 

  6. Lanzavecchia A, Sallusto F (2005) Understanding the generation and function of memory T cells subsets. Curr Opin Immunol 17:326–332

    Article  PubMed  CAS  Google Scholar 

  7. Ruffell B, DeNardo DG, Affara NI, Coussens LM (2010) Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21:3–10

    Article  PubMed  CAS  Google Scholar 

  8. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between pro- and anti-tumor immunity. Curr Opin Genet Dev 18:11–18

    Article  PubMed  CAS  Google Scholar 

  9. Lyle S, Salhany KE, Elder DE (2000) TIA-1 positive tumor-infiltrating lymphocytes in nevi and melanomas. Mod Pathol 13:52–55

    Article  PubMed  CAS  Google Scholar 

  10. Elder D (1999) Tumor progression, early diagnosis and prognosis of melanoma. Acta Oncol 38:535–547

    Article  PubMed  CAS  Google Scholar 

  11. Prall F, Dührkop T, Weirich V, Ostwald C, Lenz P, Nizze H, Barten M (2004) Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum Pathol 35:808–816

    Article  PubMed  CAS  Google Scholar 

  12. Zhang L, Garcia Conejo, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

  13. Uppaluri R, Dunn GP, Lewis JS Jr (2008) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun 8:16

    PubMed  Google Scholar 

  14. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  15. Cesco-Gaspere M, Morris E, Stauss HJ (2009) Immunomodulation in the treatment of haematological malignancies. Clin Exp Med 9:81–92

    Article  PubMed  CAS  Google Scholar 

  16. Siu D (2009) Cancer therapy using tumor-associated antigens to reduce side effects. Clin Exp Med 9:181–198

    Article  PubMed  CAS  Google Scholar 

  17. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    Article  PubMed  Google Scholar 

  18. Tan TT, Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:209–216

    Article  PubMed  CAS  Google Scholar 

  19. Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T Bougras G, Muller WA, Moretta L, Münz C (2004) Distinct CT roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 101:16606–16611

    Google Scholar 

  20. Becknell B, Caligiuri MA (2008) Natural killer cells in innate immunity and cancer. J Immunother 31:685–692

    Article  PubMed  Google Scholar 

  21. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  22. Giuliani M, Giron-Mechel J, Negrini S, Vacca P, Durali D, Caignard A, Le Bousse-Kerdiles C, Chouaib S, Devocelle A, Bahri R, Durrbach A, Taoufik Y, Ferrini S, Croce M, Mingari MC, Moretta L, Azzarone B (2008) Generation of a novel regulatory NK cell subset from peripheral blood CD34+ progenitors promoted by membrane-bound IL-15. PLoS One 3:e2241

    Article  PubMed  Google Scholar 

  23. Smith MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of Natural- Killer- cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861

    Article  Google Scholar 

  24. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    Article  PubMed  CAS  Google Scholar 

  25. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  PubMed  CAS  Google Scholar 

  26. Maccalli C, Scaramuzza S, Parmiani G (2009) TNK cells (NKG2D+ CD8+ or CD4+ T lymphocytes) in the control of human tumors. Cancer Immunol Immunother 58:801–807

    Article  PubMed  CAS  Google Scholar 

  27. Burke S, Lakshmikanth T, Colucci F, Carbone E (2010) New views on natural killer cell-based immunotherapy for melanoma treatment. Trends Immunol 31:339–345

    Google Scholar 

  28. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174

    Article  PubMed  CAS  Google Scholar 

  29. Quiao M, Thornton AM, Shevach EM (2007) CD4+ CD25+ regulatory T cells render naïve CD4+ CD25- cells anergic and suppressive. Immunology 120:447–455

    Article  Google Scholar 

  30. Ebert LM, Tan BS, Browning J, Svobodovna S, Russel SE, Kirkpatrick N Gedye C, Moss D, Ng SP, MacGregor D, Davis ID, Cebon J, Chen W (2008) The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68:3001–3009

    Google Scholar 

  31. Yamamoto M, Kamigaki T, Yamashita K, Hori Y, Hasegawa H, Kuroda D, Moriyama H, Nagata M, Ku Y, Kuroda Y (2009) Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cells fusion hybrids and regulatory T cell depletion in pancreatic cancer. Oncol Rep 22:337–343

    Article  PubMed  CAS  Google Scholar 

  32. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumours microenvironment. Nat Rev Immunol 8:467–477

    Article  PubMed  CAS  Google Scholar 

  33. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  34. Steinman RM (2003) Some interface of dendritic cell biology. APMIS 111:675–697

    Article  PubMed  CAS  Google Scholar 

  35. Shortman K, Liu YJ (2002) Mouse and human dendritic cells subtypes. Nat Rev Immunol 2:151–161

    Article  PubMed  CAS  Google Scholar 

  36. Ardavin C, Martinez del Hoyo G, Martin P, Anjuere F, Arias CF, Marin AR, Ruiz S, Parillas H, Hernandez V (2001) Origin and differentiation of dendritic cells. Trends Immunol 22:691–700

    Article  PubMed  CAS  Google Scholar 

  37. Ferrari S, Malugani F, Rovati B, Porta C, Riccardi A, Danova M (2005) Flow cytometric analysis of circulating dendritic cell subsets and intracellular cytokine production in advanced breast cancer patients. Oncol Rep 14:113–120

    PubMed  CAS  Google Scholar 

  38. Eksioglu EA, Eisen S, Reddy V (2010) Dendritic cells as therapeutic agents against cancer. Front Biosci 15:321–347

    Article  PubMed  CAS  Google Scholar 

  39. Rovati B, Mariucci S, Manzoni M, Bencardino K, Danova M (2008) Flow cytometric detection of circulating dendritic cells in healthy subjects. EJH 52:45–52

    PubMed  Google Scholar 

  40. Gottfried E, Kreutz M, Mackensen A (2007) Tumor-induced modulation of dendritic cell function. Cytokine Growth Factor Rev 19:65–77

    Article  PubMed  Google Scholar 

  41. Ye F, Yu Y, Hu Y, Lu W, Xie X (2010) Alterations of dendritic cells subsets in the peripheral circulation of patients with cervical carcinoma. J Exp Clin Cancer Res 29:78

    Article  PubMed  CAS  Google Scholar 

  42. McCoy JL, Rucker R, Petros JA (2000) Cell-mediated immunity to tumor associated antigens is a better predictor of survival in early stage breast cancer than stage, grade or lymph node status. Breast Cancer Res Treat 60:227–234

    Article  PubMed  CAS  Google Scholar 

  43. Mackall CL (2000) T-Cell Immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cell 18:10–18

    Article  CAS  Google Scholar 

  44. Collova E, Rovati B, Grasso D, Bencardino K, Manzoni M, Danova M (2008) Effect of peg-filgrastim supported dose-dense adjuvant chemotherapy on the peripheral blood leukocyte phenotype in breast cancer patients. Mol Med Rep. doi:10.3892/mmr_00000000

  45. Komada Y, Zhang SL, Zhou YW, Hanada M, Shibata T, Azuma E, Sakurai M (1992) Cellular immunosuppression in children with acute lymphoblastic leukemia: effect of consolidation chemotherapy. Cancer Immunol Immunother 35:271–276

    Article  PubMed  CAS  Google Scholar 

  46. Ageitos AG, Varney ML, Bierman PJ, Vose JM, Warkentin PI, Talmadge JE (1999) Comparison of monocyte-dependent T cell inhibitory activity in GM-CSF vs G-CSF mobilized PSC products. Bone Marrow Transplant 23:63–69

    Article  PubMed  CAS  Google Scholar 

  47. Ino K, Singh RK, Talmadge JE (1997) Monocytes from mobilized stem cells inhibit T cell function. J Leukoc Biol 61:583–591

    PubMed  CAS  Google Scholar 

  48. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN, Perez EA, Carpenter J, Hurd D, Holland JF, Smith BL, Sartor CI, Leung EH, Abrams J, Schilsky RL, Muss HB and Norton L (2003) Randomized trial of dose-dense versus conventionally schedules and sequential versus concurrent combination chemotherapy as post operative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/cer and Leukemia Group B Trial 9741. J Clin Oncol 21:1431–1439

    Google Scholar 

  49. Tayebi H, Kuttler F, Saas P, Lienard A, Petracca B, Lapierre V, Ferrand C, Fest T, Cahn J, Blaise D, Kuentz M, Hervé P, Tiberghien P, Robinet E (2001) Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells. Exp Hematol 29:458–470

    Article  PubMed  CAS  Google Scholar 

  50. Valente JF, Alexander JW, Li BG, Noel JG, Custer DA, Ogle JD, Ogle CK (2002) Effect of in vivo infusion of granulocyte colony-stimulating factor on immune function. Shock 17:23–29

    Article  PubMed  Google Scholar 

  51. Rutella S, Pierelli L, Bonanno G, Sica S, Ameglio F, Capoluongo E, Mariotti A, Scambia G, d’Onofrio G, Leone G (2002) Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells. Blood 100:2562–2571

    Article  PubMed  CAS  Google Scholar 

  52. Sewell HF, Halbert CF, Robins RA, Galvin A, Chan S, Blamey RW (1993) Chemotherapy induced differential changes in lymphocyte subsets and natural killer cell function in patients with advanced breast-cancer disease. Int J Cancer 55:735–738

    Article  PubMed  CAS  Google Scholar 

  53. Sara E, Kotsakis A, Souklakos J, Kourousis C, Kakolyris S, Mavromanolakis E, Vlachonicolis J, Georgoulias V (1999) Post-chemotherapy lymphopoiesis in patients with solid tumors is characterized by CD4+ cell proliferation. Anticancer Res 19:471–476

    PubMed  CAS  Google Scholar 

  54. Schroeder W, Vering A, Stegmuller M, Strohmeier R (1997) Lymphocytes subsets in patients with ovarian and breast cancer. Eur J Gynaecol Oncol 18:474–479

    Google Scholar 

  55. Melichar B, Touskova M, Dvorak J, Jandik P, Kopecky (2001) The peripheral blood leukocyte phenotype in patients with breast cancer: effect of doxorubicin/paclitaxel combination chemotherapy. Immunopharmacol Immunotoxicol 23:163–173

    Article  PubMed  CAS  Google Scholar 

  56. Ferrari S, Rovati B, Cucca L, Scarabelli C, Presti M, Beccaria C, Collovà E, Porta C, Danova M (2002) Impact of topotecan-based chemotherapy on the immune system of advanced ovarian cancer patients: an immunophenotypic study. Oncol Rep 9:1107–1113

    PubMed  CAS  Google Scholar 

  57. Chan OT, Yang KX (2001) The immunological effects of taxanes. Cancer Immunol Immunother 49:181–185

    Article  Google Scholar 

  58. Michael A, Pandha HS (2003) Renal cel carcinoma: tumour markers, T-cell epitopes, and potential for new therapies. Lancet Oncol 4:215–223

    Article  PubMed  CAS  Google Scholar 

  59. Caignard A, Guillard M, Gaudin C, Escudier B, Dietrich TF (1996) In situ demonstration of renal cell carcinoma-specific T-cell clones. Int J Cancer 66:564–570

    Article  PubMed  CAS  Google Scholar 

  60. Brouwenstijn N, Gaugler B, Kruse KM, van der Spek CW, Mulder A, Osanto S, van den Eynde BJ, Schrier PI (1996) Renal cell carcinoma–specific lysis by cytotoxic T-lymphocyte clones isolated from peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Int J Cancer 68:177–182

    Article  PubMed  CAS  Google Scholar 

  61. Van den Hove LE, Van Gool SW, Van Poppel H, Baert L, Coorevits L, Van Damme B, Ceuppens JL (1997) Phenotype, cytokine production and cytolityc capacity of fresh (uncultured) tumor infiltrating T lymphocytes in human renal cell carcinoma. Clin Exp Immunol 109:501–509

    Article  PubMed  Google Scholar 

  62. Schwaab T, Schned AR, Heaney JA, Cole BF, Atzpodien J, Wittke F, Ernastoff MS (1999) In vivo description of dendritic cells in human renal cell carcinoma. J Urol 162:291–292

    Article  Google Scholar 

  63. Kudo D, Rayman P, Horton C, Cathcart MK, Bukowski RM, Thornton M, Tannenbaum C, Finke JH (2003) Gangliosides expressed by the renal cell carcinoma cell line SK-RC-45 are involved in tumor induced apoptosis of T cells. Cancer Res 63:1676–1683

    PubMed  CAS  Google Scholar 

  64. Rayman P, Uzzo RG, Kolenko V, Bloom T, Cathcart MK, Molto L, Novick AC, Bukowski RM, Hamilton T, Finke JH (2000) Tumor-induced dysfunction in interleukin-2 production and interleukin-2 receptor signaling: a mechanism of immunescape. Cancer J Sci Am 6:S81–S87

    PubMed  Google Scholar 

  65. Finke JH, Rayman P, George R, Tannenbaum CS, Kolenko V, Uzzo R, Novick AC, Bukowski RM (2001) Tumor-induced sensitivity to apoptosis in T cells from patients with renal cell carcinoma: role of nuclear factor-kappaB. Clin Cancer Res 7:940s–946s

    PubMed  CAS  Google Scholar 

  66. Nagler A, Lanier LL, Cwirla S, Phillips JH (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143:3183–3191

    PubMed  CAS  Google Scholar 

  67. Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, Degli-Esposti MA, Hayakawa Y (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510

    Article  PubMed  CAS  Google Scholar 

  68. Porta C, Bonomi L, Lillaz B, Paglino C, Rovati B, Imarisio I, Morbini P, Villa C, Danova M, Mensi M, Rovereto B (2007) Renal cell carcinoma-induced immunosuppression: an immunophenotypic study of lymphocyte subpopulation and circulating dendritic cells. Anticancer Res 27:165–174

    PubMed  CAS  Google Scholar 

  69. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T cell subset imbalance after intensive chemotherapy. Blood 89:3700–3707

    PubMed  CAS  Google Scholar 

  70. Small TN, Keever CA, Weiner-Fedus S, Heller G, O’Reilly RJ, Flomenberg N (1990) B-cell differentiation following autologous, conventional or T cell depleted bone marrow transplantation: a recapitulation of normal B cell ontogeny. Blood 76:1647–1656

    PubMed  CAS  Google Scholar 

  71. Storek J, Saxon A (1992) Reconstitution of B cell immunity following bone marrow transplantation. Bone Marrow Transplant 9:395–408

    PubMed  CAS  Google Scholar 

  72. Sozzani S, Rusnati M, Riboldi E, Mitola S, Presta M (2007) Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol 28:385–392

    Article  PubMed  CAS  Google Scholar 

  73. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nature 8:618–631

    CAS  Google Scholar 

  74. Della Porta M, Danova M, Rigolin GM, Brugnatelli S, Rovati B, Tronconi C, Fraulini C, Russo Rossi A, Riccardi A, Castoldi G (2005) Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 68:276–284

    Article  PubMed  CAS  Google Scholar 

  75. Gottfried E, Kreutz M, Haffner S, Holler E, Iacobelli M, Andreesen R, Eissner G (2007) Differentiation of human tumour-associated dendritic cells into endothelial-like cells: an alternative pathway of tumour angiogenesis. Scand J Immunol 65:329–335

    Article  PubMed  CAS  Google Scholar 

  76. Fernandez Pujol B, Lucibello FC, Zuzarte M, Lütjens P, Müller R, Havemann K (2001) Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 80:99–110

    Article  PubMed  CAS  Google Scholar 

  77. Bria E, Di Maio M, Carlini P, Cuppone F, Giannarelli D, Cognetti F, Milella M (2009) Targeting targeted agents: open issues for clinical trial design. J Exp Clin Cancer Res 28:66–72

    Article  PubMed  Google Scholar 

  78. Folkamn J (1971) Tumor angiogenesis therapeutic implications. N Engl J Med 285:1182–1186

    Article  Google Scholar 

  79. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8:579–591

    Article  PubMed  CAS  Google Scholar 

  80. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  81. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  PubMed  CAS  Google Scholar 

  82. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  83. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, Gorbunova V, Bay JO, Bodrogi I, Jagiello-Gruszfeld A, Moore N (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111

    Article  PubMed  Google Scholar 

  84. Loupakis F, Bria E, Vaccaro V, Cuppone F, Milella M, Carlini P, Cremolini C, Salvatore L, Falcone A, Muti P, Sperduti I, Giannarelli D, Cognetti F (2010) Magnitude of benefit of the addition of bevacizumab to first-line chemotherapy for metastatic colorectal cancer: meta-analysis of randomized clinicals trials. J Exp Clin Cancer Res 29:58

    Article  PubMed  Google Scholar 

  85. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  PubMed  CAS  Google Scholar 

  86. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  PubMed  CAS  Google Scholar 

  87. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Canc Res 6:1755–1766

    CAS  Google Scholar 

  88. Ohm JE, Carbone DP (2002) Immune disfunction in cancer patients. Oncology 16:11–18

    PubMed  Google Scholar 

  89. Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP (2005) Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 174:215–222

    PubMed  CAS  Google Scholar 

  90. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160:1224–1232

    PubMed  CAS  Google Scholar 

  91. Ohm JE, Shurin MR, Esche C, Lotze MT, Carbone DP, Gabrilovich DI (1999) Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol 163:3260–3268

    PubMed  CAS  Google Scholar 

  92. Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23:263–272

    Article  PubMed  CAS  Google Scholar 

  93. Laxmanan S, Robertson SW, Wang E, Lau JS, Briscoe DM, Mukhopadhyay D (2005) Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun 334:193–198

    Article  PubMed  CAS  Google Scholar 

  94. Mimura K, Kono K, Takahashi A, Kawaguchi Y, Fujii H (2007) Vascular endothelial growth factor inhibits the function of human mature dendritic cell mediated by VEGF receptor 2. Cancer Immunol Immunother 56:761–770

    Article  PubMed  CAS  Google Scholar 

  95. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    Article  PubMed  CAS  Google Scholar 

  96. Gabrilovich D (1998) Vascular endothelial growth factors inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    PubMed  CAS  Google Scholar 

  97. Saito H, Tsujitani S, Ikeguchi M, Maeta M, Kaibara N (1998) Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br J Cancer 1998(78):1573–1577

    Article  Google Scholar 

  98. Fan XH, Han BH, Dong QG, Sha HF, Bao GL, Liao ML (2003) Vascular endothelial growth factor inhibits dendritic cells from patients with non-small cell lung carcinoma. Zhonghua Jie He He Hu Xi Za Zhi 26:539–543

    PubMed  Google Scholar 

  99. Lissoni P, Malugani F, Bonfanti A, Bucovec R, Secondino S, Brivio F, Ferrari-Bravo A, Ferrante R, Vigoré L, Rovelli F, Mandalà M, Viviani S, Fumagalli L, Gardani GS (2001) Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J Biol Regul Homeostatic Agents 15:140–144

    CAS  Google Scholar 

  100. Tsukayama S, Omura K, Yoshida K, Tanaka Y, Watanabe G (2005) Prognostic value of CD83-positive mature dendritic cells and their relation to vascular endothelial growth factor in advanced human gastric cancer. Oncol Rep 14:369–375

    PubMed  CAS  Google Scholar 

  101. Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI (2007) Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 13:4840–4848

    Article  PubMed  CAS  Google Scholar 

  102. Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57:1115–1124

    Article  PubMed  CAS  Google Scholar 

  103. Manzoni M, Rovati B, Ronzoni M, Loupakis F, Mariucci S, Ricci V, Gattoni E, Salvatore L, Villa E, Tinelli C, Danova M (2010) Imunological effects of bevacizumab-based treatment in metastatic colorectal cancer. Oncology. doi:10.1159/000320609

  104. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101:4878–4886

    Article  PubMed  CAS  Google Scholar 

  105. Gottfried E, Kreutz M, Mackensen A (2008) Tumor-induced modulation of dendritic cell function. Cytokine Growth Factor Rev 19:65–77

    Article  PubMed  CAS  Google Scholar 

  106. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–490

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work was partly supported by a Research grant (scientific project n. 08010901/09 to M. Danova) from the “Fondazione IRCCS Policlinico S. Matteo”, Pavia.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Mariucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariucci, S., Rovati, B., Manzoni, M. et al. Lymphocyte subpopulation and dendritic cell phenotyping during antineoplastic therapy in human solid tumors. Clin Exp Med 11, 199–210 (2011). https://doi.org/10.1007/s10238-010-0120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-010-0120-7

Keywords

Navigation