Skip to main content
Log in

The Effect of Nucleus Pulposus Crosslinking and Glycosaminoglycan Degradation on Disc Mechanical Function

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Altered mechanical loading, secondary to biochemical changes in the nucleus pulposus, is a potential mechanism in disc degeneration. An understanding of the role of this altered mechanical loading is only possible by separating the mechanical and biological effects of early nucleus pulposus changes. The objective of this study was to quantify the mechanical effect of decreased glycosaminoglycans (GAG) and increased crosslinking in the nucleus pulposus using in vitro rat lumbar discs. Following initial mechanical testing the discs were injected according to the four treatment groups: PBS control, chondroitinase-ABC (ChABC) for GAG degradation, genipin (Gen) for crosslinking, or a combination of chondroitinase and genipin (ChABC+Gen). After treatment the discs were again mechanically tested, followed by histology or biochemistry. Neutral zone mechanical properties were changed by approximately 20% for PBS, ChABC, and ChABC+Gen treatments (significant only for PBS in a paired comparison). These trends were reversed with genipin crosslinking alone. With ChABC treatment the effective compressive modulus increased and the GAG content decreased; with the combination of ChABC+Gen the mechanics and GAG content were unchanged. Degradation of nucleus pulposus GAG alters disc axial mechanics, potentially contributing to the degenerative cascade. Crosslinking is unlikely to contribute to degeneration, but may be a potential avenue of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs - The effects of age and degeneration. J Bone Joint Surg-Br 78B(6):965–972

    Article  Google Scholar 

  • Andersson GBJ, Schultz AB (1979) Effects of fluid injection on mechanical-properties of intervertebral disks. J Biomech 12(6):453–458

    Article  PubMed  Google Scholar 

  • Ando T, Kato F, Mimatsu K, Iwata H (1995) Effects of chondroitinase Abc on degenerative intervertebral discs. Clin Orthop Relat Res (318):214–221

  • Boxberger JI, Sen S, Auerbach JA, Yerramalli CS, Elliott DM (2005) Glycosaminoglycan content affects intervertebral disc neutral zone mechanics in axial loading. Annual Meeting of Biomedical Engineering Society, Baltimore, Maryland, USA

  • Boxberger JI, Sen S, Yerramalli CS, Elliott DM (2006) Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in ratlumbar motin segments. J Orthop Res (in press)

  • Buckwalter JA (1995) Spine update - aging and degeneration of the human intervertebral disc. Spine 20(11):1307–1314

    PubMed  Google Scholar 

  • Buckwalter JA, Thomas A, Einhorn MD, Sheldon R Ed. (2000) Orthopaedic basic science, American Academy of Orthopaedic Surgeons

  • Difabio JL, Pearce RH, Caterson B, Hughes H (1987) The heterogeneity of the non-aggregating proteoglycans of the human intervertebral-disk. Biochem J 244(1):27–33

    PubMed  Google Scholar 

  • Duance VC, Crean JKG, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine 23(23):2545–2551

    Article  PubMed  Google Scholar 

  • Elliott DM, Sarver JJ (2004) Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 29(7):713–722

    Article  PubMed  Google Scholar 

  • Eurell JAC, Brown MD, Ramos M (1990) The effects of chondroitinase abc on the rabbit intervertebral-disk - a roentgenographic and histologic-study. Clin Orthop Relat Res (256):238–243

  • Farndale RW, Sayers CA, Barrett AJ (1982) A direct spectrophotometric micro-assay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9(4):247–248

    Article  PubMed  Google Scholar 

  • Fry TR, Eurell JC, Johnson AL, Brown MD, Losonsky JM, Schaeffer DJ (1991) Radiographic and histologic effects of chondroitinase abc on normal canine lumbar intervertebral-disk. Spine 16(7): 816–819

    Article  PubMed  Google Scholar 

  • Hedman TP, Chuang S-Y, Syed B, Gray D (2003) Biomechanical benefits of crosslink augmentation in spinal discs. 2003 ASME International Mechanical Engineering Congress, Nov 15–21 2003, American Society of Mechanical Engineers, Washington, DC

  • Henderson N, Stanescu V, Cauchoix J (1991) Nucleolysis of the rabbit intervertebral-disk using chondroitinase abc. Spine 16(2):203–208

    PubMed  Google Scholar 

  • Herbage D, Bouillet J, Bernengo JC (1977) Biochemical and physicochemical characterization of pepsin-solubilized type-Ii collagen from bovine articular-cartilage. Biochem J 161(2):303–312

    PubMed  Google Scholar 

  • Hiyama K, Okada S (1975) Crystallization and some properties of chondroitinase from arthrobacter-aurescens. J Biol Chem 250(5): 1824–1828

    PubMed  Google Scholar 

  • Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21(10):1174–1184

    Article  PubMed  Google Scholar 

  • Johannessen W, Vresilovic EJ, Wright AC, Elliott DM (2004) Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Ann Biomed Eng 32(1):70–76

    Article  PubMed  Google Scholar 

  • Johannessen W, Vresilovic EJ, Mills JR, Cloyd JM, Guerin HL, Elliott DM (2005) Effect of nucleotomy on tension-compression behavior of the intervertebral disc. Transactions of Orthopaedic Research Society Meeting, Orthopaedic Research Society, Washington D.C.

    Google Scholar 

  • Kato F, Iwata H, Mimatsu K, Miura T (1990) Experimental chemonucleolysis with chondroitinase-abc. Clin Orthop Relat Res (253): 301–308

  • Lu DS, Shono Y, Oda I, Abumi K, Kaneda K (1997) Effects of chondroitinase ABC and chymopapain on spinal motion segment biomechanics - An in vivo biomechanical, radiologic, and histologic canine study. Spine 22(16):1828–1834

    Article  PubMed  Google Scholar 

  • Luoma K, Riihimaki H, Luukkonen R, RAininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine 25(4):487–492

    Article  PubMed  Google Scholar 

  • Martinez JB, Oloyede VOA, Broom ND (1997) Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model. Med Eng Phys 19(2):145–156

    Article  PubMed  Google Scholar 

  • Mimura M, Panjabi MM, Oxlan TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19(12):1371–1380

    Article  PubMed  Google Scholar 

  • Monnier VM, Kohn RR, Cerami A (1984) Accelerated age-related browning of human collagen in diabetes-mellitus. In: Proceedings of the national academy of sciences of the United States of America-biological sciences 81(2):583–587

  • Nachemson A, Morris JM (1964) Invivo measurements of intradiscal pressure - discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg-Am 46(5):1077–1092

    PubMed  Google Scholar 

  • Natarajan RN, Andersson GBJ (1999) The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine 24(18):1873–1881

    Article  PubMed  Google Scholar 

  • Norcross JP, Lester GE, Weinhold P, Dahners LE (2003) An in vivo model of degenerative disc disease. J Orthop Res 21(1):183–188

    Article  PubMed  Google Scholar 

  • Pal S, Tang LH, Choi H, Habermann E, Rosenberg L, Roughley P, Poole AR (1981) Structural-changes during development in bovine fetal epiphyseal cartilage. Coll Relat Res 1(2):151–176

    PubMed  Google Scholar 

  • Panjabi MM (2003) Clinical spinal instability and low back pain. J Electromyogr Kinesiol 13(4):371–379

    Article  PubMed  Google Scholar 

  • Pokharna HK, Phillips FM (1998) Collagen crosslinks in human lumbar intervertebral disc aging. Spine 23(15):1645–1648

    Article  PubMed  Google Scholar 

  • Riches PE, Dhillon N, Lotz J, Woods AW, McNally DS (2002) The internal mechanics of the intervertebral disc under cyclic loading. J Biomech 35(9):1263–1271

    Article  PubMed  Google Scholar 

  • Roughley PJ, Alini M, Antoniou J (2002) The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 30:869–874

    Article  PubMed  Google Scholar 

  • Sarver JJ, Elliott DM (2004) Altered disc mechanics in mice genetically engineered for reduced type I collagen. Spine 29(10):1094–1098

    Article  PubMed  Google Scholar 

  • Sarver JJ, Elliott DM (2005) Mechanical differences between lumbar and tail discs in the mouse. J Orthop Res 23(1):150–155

    Article  PubMed  Google Scholar 

  • Sasaki M, Takahashi T, Miyahara K, Hirose T (2001) Effects of chondroitinase ABC on intradiscal pressure in sheep - An in vivo study. Spine 26(5):463–468

    Article  PubMed  Google Scholar 

  • Saunders EC (1964) Treatment of canine intervertebral disc syndrome with chymopapain. J Am Vet Med Assoc 145(9):893–896

    PubMed  Google Scholar 

  • Schnider SL, Kohn RR (1981) Effects of age and diabetes-mellitus on the solubility and non-enzymatic glucosylation of human-skin collagen. J Clin Invest 67(6):1630–1635

    Article  PubMed  Google Scholar 

  • Smith L (1964) Enzyme dissolution of nucleus pulposus in humans. JAMA 187(2):137–140

    PubMed  Google Scholar 

  • Smith L, Brown JE (1967) Treatment of lumbar intervertebral disc lesions by direct injection of chymopapain. J Bone Joint Surg Am 49B:502

    Google Scholar 

  • Spencer DL, Miller JAA, Schultz AB (1985) The effects of chemonucleolysis on the mechanical-properties of the canine lumbar-disk. Spine 10(6):555–561

    Article  PubMed  Google Scholar 

  • Stegeman H, Stalder K (1967) Determination of hydroxyproline. Clinica Chimica Acta 18(2):267–273

    Article  Google Scholar 

  • Sugimura T, Kato F, Mimatsu K, Takenaka O, Iwata H (1996) Experimental chemonucleolysis with chondroitinase ABC in monkeys. Spine 21(2):161–165

    Article  PubMed  Google Scholar 

  • Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC (1999a) Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J Biomed Mat Res 47(2):116–126

    Article  Google Scholar 

  • Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC (1999b) Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mat Res 46(4):520–530

    Article  Google Scholar 

  • Sung HW, Chang Y, Liang IL, Chang WH, Chen YC (2000) Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mat Res 52(1):77–87

    Article  Google Scholar 

  • Takahashi K, Inoue SI, Takada SI, Nishiyama H, Mimura M, Wada Y (1986) Experimental-study on chemonucleolysis with special reference to the change of intradiscal pressure. Spine 11(6):617–620

    Article  PubMed  Google Scholar 

  • Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IKY, Bishop PB (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral-disk. Spine 15(5): 411–415

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerramalli, C.S., Chou, A.I., Miller, G.J. et al. The Effect of Nucleus Pulposus Crosslinking and Glycosaminoglycan Degradation on Disc Mechanical Function. Biomech Model Mechanobiol 6, 13–20 (2007). https://doi.org/10.1007/s10237-006-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0043-0

Keywords

Navigation