Skip to main content

Advertisement

Log in

Recycling of extruded polystyrene wastes by dissolution and supercritical CO2 technology

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Chemical Feedstock Recycling 9
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Polystyrene (PS) is currently used as packaging, insulating and storing material in various industrial or domestic fields. As a result, a large quantity of PS wastes is produced. Plastic wastes are not usually biodegradable, so it is necessary to suggest a technology to recycle them. Landfills and incineration are reasonably cheap methods but are not environmentally acceptable, therefore, alternative methods for polymer recycling are required. The general purpose of PS foam recycling is to recover a more compact polymeric material without degradation. Dissolution with terpenic solvents is presented here as an efficient and cheap alternative that is developed at room temperature; among the oils studied, limonene was selected because of its intermediate solubility and its abundance. The solvent removal is possible thanks to supercritical technology that provides a high solubility in limonene and almost a complete PS insolubility at moderated pressures (77 bar) and low temperatures (30 °C). Thus, based on the results of thermogravimetric and chromatographic analysis, we propose that.supercritical antisolvent precipitation is an ideal technique for carrying out the separation of PS and limonene, providing a recycled polymer with a reduced volume, almost completely free of solvent and without degradation of the polymeric chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garforth AA, Ali S, Hernández-Martínez J, Akah A (2004) Feedstock recycling of polymer wastes. Curr Opin Solid State Mater Sci 8:419–425

    Article  Google Scholar 

  2. Balakrishnan RK, Guria C (2007) Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution. Polym Degrad Stab 92:1583–1591

    Article  Google Scholar 

  3. Kiran N, Ekinci E, Snape CE (2000) Recycling of plastic wastes via pyrolysis. Resour Conserv Recycl 29:273–283

    Article  Google Scholar 

  4. Zhibo Z, Nishio S, Morioka Y, Ueno A, Ohkita H et al (1996) Thermal and chemical recycle of waste polymers. Catal Today 29:303–308

    Article  Google Scholar 

  5. Brandrup J (1996) Plastic waste issues in Germany. Polym Recycl 2:96–108

    Google Scholar 

  6. Lee M (1998) Polymers and processes. Chem Br 34:22–30

    Google Scholar 

  7. García MT, Duque G, Gracia I, De Lucas A, Rodríguez JF (2009) Recycling extruded polystyrene by dissolution with suitable solvents. J Mater Cycles Waste Manage 11:2–5

    Article  Google Scholar 

  8. Karaduman A, Imşek EH, Çiçek B, Bilgesü AY (2002) Thermal degradation of polystyrene wastes in various solvents. J Anal Appl Pyrol 62:273–280

    Article  Google Scholar 

  9. Noguchi T, Lnagaki Y, Miyashita M, Watanabe H (1998) A new recycling system for expanded polystyrene using a natural solvent. Part 2. Development of a prototype production system. Packag Technol Sci 11:29–37

    Article  Google Scholar 

  10. Noguchi T, Miyashita M, Lnagaki Y, Watanabe H (1998) A new recycling system for expanded polystyrene using a natural solvent. Part 1. A new recycling technique. Packag Technol Sci 11:19–27

    Article  Google Scholar 

  11. Noguchi T, Tomita H, Satake K, Watanabe H (1998) A new recycling system for expanded polystyrene using a natural solvent. Part 3. Life cycle assessment. Packag Technol Sci 11:39–44

    Article  Google Scholar 

  12. García MT, Gracia I, Duque G, Lucas A, Rodríguez JF (2009) Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag 29:1814–1818

    Article  Google Scholar 

  13. Shine A, Gelb J (1998) Microencapsulation process using supercritical fluids. United States: University of Delaware (Newark, DE). United States Patent 5766637

  14. Mira B, Blasco M, Berna A, Subirats S (1999) Supercritical CO2 extraction of essential oil from orange peel. Effect of operation conditions on the extract composition. J Supercrit Fluids 14:95–104

    Article  Google Scholar 

  15. Yeo SD, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34:287–308

    Article  Google Scholar 

  16. Hattori K, Naito S, Yamauchi K, Nakatani H, Yoshida T et al (2008) Solubilization of polystyrene into monoterpenes. Adv Polym Technol 27:35–39

    Article  Google Scholar 

  17. Hattori K, Shikata S, Maekawa R, Aoyama M (2010) Dissolution of polystyrene into p-cymene and related substances in tree leaf oils. J Wood Sci 56:169–171

    Article  Google Scholar 

  18. Shikata S, Watanabe T, Hattori K, Aoyama M, Miyakoshi T (2011) Dissolution of polystyrene into cyclic monoterpenes present in tree essential oils. J Mater Cycles Waste Manage 13:127–130

    Article  Google Scholar 

  19. Bernardo G, Vesely D (2007) Equilibrium solubility of alcohols in polystyrene attained by controlled diffusion. Eur Polymer J 43:938–948

    Article  Google Scholar 

  20. Subra P, Jestin P (2000) Screening design of experiment (DOE) applied to supercritical antisolvent process. Ind Eng Chem Res 39:4178–4184

    Article  Google Scholar 

  21. Lin IH, Liang PF, Tan CS (2010) Preparation of polystyrene/poly(methyl methacrylate) blends by compressed fluid antisolvent technique. J Supercrit Fluids 51:384–398

    Article  Google Scholar 

  22. Lin IH, Liang PF, Tan CS (2010) Precipitation of submicrometer-sized poly(methyl methacrylate) particles with a compressed fluid antisolvent. J Appl Polym Sci 117:1197–1207

    Article  Google Scholar 

  23. Joseph T, Halligudi SB (2005) Oxyfunctionalization of limonene using vanadium complex anchored on functionalized SBA-15. J Mol Catal A Chem 229:241–247

    Article  Google Scholar 

  24. Paulaitis ME, Krukonis VJ, Kurnik RT, Reid RC (1983) Supercritical fluid extraction. Rev Chem Eng 1:179–250

    Google Scholar 

  25. Gamse T, Marr R (2000) High-pressure phase equilibria of the binary systems carvone–carbon dioxide and limonene–carbon dioxide at 30, 40 and 50 °C. Fluid Phase Equilib 171:165–174

    Article  Google Scholar 

  26. Akgün M, Akgün NA, Dinçer S (1999) Phase behaviour of essential oil components in supercritical carbon dioxide. J Supercrit Fluids 15:117–125

    Article  Google Scholar 

  27. Chang C-MJ, Chen C-C (1999) High-pressure densities and PTxy diagrams for carbon dioxide + linalool and carbon dioxide + limonene. Fluid Phase Equilib 163:119–126

    Article  Google Scholar 

  28. Sovová H, Stateva RP, Galushko AA (2001) Essential oils from seeds: solubility of limonene in supercritical CO2 and how it is affected by fatty oil. J Supercrit Fluids 20:113–129

    Article  Google Scholar 

  29. JdC Francisco, Sivik B (2002) Solubility of three monoterpenes, their mixtures and eucalyptus leaf oils in dense carbon dioxide. J Supercrit Fluids 23:11–19

    Article  Google Scholar 

  30. Di Giacomo G, Brandani V, Del Re G, Mucciante V (1989) Solubility of essential oil components in compressed supercritical carbon dioxide. Fluid Phase Equilib 52:405–411

    Article  Google Scholar 

  31. Gironi FBaF (2001) High-pressure equilibrium data in systems containing supercritical carbon dioxide, limonene, and citral. J Chem Eng Data 46:795–799

    Article  Google Scholar 

  32. Berna A, Cháfer A, Montón JB (2000) Solubilities of essential oil components of orange in supercritical carbon dioxide. J Chem Eng Data 45:724–727

    Article  Google Scholar 

  33. Matos HA, De Azevedo EG (1989) Phase equilibria of natural flavours and supercritical solvents. Fluid Phase Equilibria 52:357–364

    Article  Google Scholar 

  34. Gironi F, Maschietti M (2010) High-pressure gas–liquid equilibrium measurements by means of a double-chamber recirculation apparatus. Data on the system carbon dioxide–limonene at 50 and 70 °C. J Supercrit Fluids 55:49–55

    Article  Google Scholar 

  35. Kim KH, Hong J (1999) Equilibrium solubilities of spearmint oil components in supercritical carbon dioxide. Fluid Phase Equilib 164:107–115

    Article  Google Scholar 

  36. Marteau P, Obriot J, Tufeu R (1995) Experimental determination of vapor–liquid equilibria of CO2 + limonene and CO2 + citral mixtures. J Supercrit Fluids 8:20–24

    Article  Google Scholar 

  37. Richter M, Sovová H (1993) The solubility of two monoterpenes in supercritical carbon dioxide. Fluid Phase Equilib 85:285–300

    Article  Google Scholar 

  38. Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10:207–234

    Article  Google Scholar 

  39. Kirby CF, McHugh MA (1999) Phase behavior of polymers in supercritical fluid solvents. Chem Rev 99:565–602

    Article  Google Scholar 

  40. Rindfleisch F, DiNoia TP, McHugh MA (1996) Solubility of polymers and copolymers in supercritical CO2. J Phys Chem 100:15581–15587

    Article  Google Scholar 

  41. O’Neill ML, Cao Q, Fang M, Johnston KP, Wilkinson SP et al (1998) Solubility of homopolymers and copolymers in carbon dioxide. Ind Eng Chem Res 37:3067–3079

    Article  Google Scholar 

  42. Wissinger RG, Paulaitis ME (1991) Glass transitions in polymer/CO2 mixtures at elevated pressures. J Polym Sci Part B Polym Phys 29:631–633

    Article  Google Scholar 

  43. Zhang Y, Gangwani KK, Lemert RM (1997) Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide. J Supercrit Fluids 11:115–134

    Article  Google Scholar 

  44. Chang SH, Park SC, Shim JJ (1998) Phase equilibria of supercritical fluid–polymer systems. J Supercrit Fluids 13:113–119

    Article  Google Scholar 

  45. Shieh YT, Liu KH (2003) The effect of carbonyl group on sorption of CO2 in glassy polymers. J Supercrit Fluids 25:261–268

    Article  Google Scholar 

  46. Pantoula M, Panayiotou C (2006) Sorption and swelling in glassy polymer/carbon dioxide systems: part I. Sorption. J Supercrit Fluids 37:254–262

    Article  Google Scholar 

  47. Kikic I (2009) Polymer–supercritical fluid interactions. J Supercrit Fluids 47:458–465

    Article  Google Scholar 

  48. Rincón J, Cañizares P, García MT, Gracia I (2003) Regeneration of used lubricant oil by propane extraction. Ind Eng Chem Res 42:4867–4873

    Article  Google Scholar 

  49. Fernández-Ronco MP, Ortega-Noblejas C, Gracia I, De Lucas A, García MT et al (2010) Supercritical fluid fractionation of liquid oleoresin capsicum: statistical analysis and solubility parameters. J Supercrit Fluids 54:22–29

    Article  Google Scholar 

  50. Gracia I, Rodríguez JF, De Lucas A, Fernandez-Ronco MP, García MT (2011) Optimization of supercritical CO2 process for the concentration of tocopherol, carotenoids and chlorophylls from residual olive husk. J Supercrit Fluids 59:72–77

    Article  Google Scholar 

  51. He J, Wang B (2009) Acetone influence on glass transition of poly(methyl methacrylate) and polystyrene in compressed carbon dioxide. Ind Eng Chem Res 48:5093–5097

    Article  Google Scholar 

  52. Behme S, Sadowski G, Arlt W (1999) Modeling of the separation of polydisperse polymer systems by compressed gases. Fluid Phase Equilib 158–160:869–877

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Consejeria de Educacion y Ciencia (PBI06-0139, PBI08-0248-9341) Junta de Comunidades de Castilla (La Mancha, Spain), and Tecnove-Fiberglass is gratefully acknowledged. We also acknowledge Spanish MEPSYD for provision of a FPU grant to our PhD student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, C., García, M.T., Gracia, I. et al. Recycling of extruded polystyrene wastes by dissolution and supercritical CO2 technology. J Mater Cycles Waste Manag 14, 308–316 (2012). https://doi.org/10.1007/s10163-012-0074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-012-0074-9

Keywords

Navigation