Skip to main content

Advertisement

Log in

Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase I clinical trial

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Control of epigenetic changes using histone deacetylase inhibitors (HDACi) is thought to be a promising target in therapy of gastrointestinal (GI) cancer. In this study, we evaluated the safety, pharmacokinetics, and efficacy of two dosing regimens of vorinostat, an oral HDACi, in patients with GI tumors.

Methods

Patients received either vorinostat 300 mg bid for 3 consecutive days followed by 4 rest days per cycle (n = 10) or vorinostat 400 mg qd for 21 consecutive days per cycle (n = 6). Pharmacokinetic parameters were assessed for the first treatment cycle. Efficacy was determined through evaluation of tumors and assessment of treatment response.

Results

The median treatment duration of 300 mg bid was 52.0 days and of 400 mg qd was 51.5 days. The most common drug-related adverse events were anorexia, nausea, fatigue, and hyperglycemia. Two patients taking 400 mg qd had dose-limiting toxicities (DLTs) of thrombocytopenia. No patients taking 300 mg bid experienced DLT. Five patients taking 300 mg bid and 2 patients taking 400 mg qd maintained stable disease for >8 weeks, with the maximum duration of 245 days. Mean drug exposure (±SD) was generally higher with 400 mg qd (area under the curve [AUC0–∞] of 7.75 ± 2.79 μM h on Day 1 post-dose) compared with 300 mg bid (AUC0–∞ of 3.94 ± 1.56 μM h on Day 1 post-dose).

Conclusions

Vorinostat 300 mg bid for 3 consecutive days followed by 4 days of rest was better tolerated in patients with GI cancer than a higher once daily dose. Additionally, there were patients in both groups who achieved stable disease, most maintaining it for longer than 8 weeks, suggesting vorinostat as a possible active agent in the treatment of GI cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  PubMed  CAS  Google Scholar 

  2. Marks P, Rifkind RA, Richon VM et al (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  3. Timmermann S, Lehrmann H, Polesskaya A et al (2001) Histone acetylation and disease. Cell Mol Life Sci 58:728–736

    Article  PubMed  CAS  Google Scholar 

  4. Wang C, Fu M, Mani S et al (2001) Histone acetylation and the cell-cycle in cancer. Front Biosci 6:D610–29, D610–29

    Google Scholar 

  5. Ueno M, Toyota M, Akino K et al (2004) Aberrant methylation and histone deacetylation associated with silencing of SLC5A8 in gastric cancer. Tumour Biol 25:134–140

    Article  PubMed  CAS  Google Scholar 

  6. Murai M, Toyota M, Suzuki H et al (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11:1021–1027

    PubMed  CAS  Google Scholar 

  7. Kawamura YI, Toyota M, Kawashima R et al (2008) DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 135:142–151

    Article  PubMed  CAS  Google Scholar 

  8. Marson CM (2009) Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer. Anticancer Agents Med Chem 9:661–692

    Article  PubMed  CAS  Google Scholar 

  9. Butler LM, Agus DB, Scher HI et al (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170

    PubMed  CAS  Google Scholar 

  10. Duvic M, Talpur R, Ni X et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39

    Article  PubMed  CAS  Google Scholar 

  11. Galanis E, Jaeckle KA, Maurer MJ et al (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27:2052–2058

    Article  PubMed  CAS  Google Scholar 

  12. Secrist JP, Zhou X, Richon VM (2003) HDAC inhibitors for the treatment of cancer. Curr Opin Investig Drugs 4:1422–1427

    PubMed  CAS  Google Scholar 

  13. Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210

    Article  PubMed  CAS  Google Scholar 

  14. Huang C, Ida H, Ito K et al (2007) Contribution of reactivated RUNX3 to inhibition of gastric cancer cell growth following suberoylanilide hydroxamic acid (vorinostat) treatment. Biochem Pharmacol 73:990–1000

    Article  PubMed  CAS  Google Scholar 

  15. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782:197–228

    Article  PubMed  CAS  Google Scholar 

  16. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    Article  PubMed  CAS  Google Scholar 

  17. Ammanamanchi S, Brattain MG (2004) Restoration of transforming growth factor-beta signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells. J Biol Chem 279:32620–32625

    Article  PubMed  CAS  Google Scholar 

  18. Kelly WK, O’Connor OA, Krug LM et al (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23:3923–3931

    Article  PubMed  CAS  Google Scholar 

  19. Olsen EA, Kim YH, Kuzel TM et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25:3109–3115

    Article  PubMed  CAS  Google Scholar 

  20. Fujiwara Y, Yamamoto N, Yamada Y et al (2009) Phase I and pharmacokinetic study of vorinostat (suberoylanilide hydroxamic acid) in Japanese patients with solid tumors. Cancer Sci 100:1728–1734

    Article  PubMed  CAS  Google Scholar 

  21. Mann BS, Johnson JR, Cohen MH, Justice R et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    Article  PubMed  CAS  Google Scholar 

  22. Rubin E, Agrawal N, Friedman E et al (2006) A study to determine the effects of food and multiple dosing on the pharmacokinetics of vorinostat given orally to patients with advanced cancer. Clin Cancer Res 12:7039 doi:10.1158/1078-0432.CCR-06-1802

    Google Scholar 

  23. Gehan EA, Tefft MC (2000) Will there be resistance to the RECIST (response evaluation criteria in solid tumors)? J Natl Cancer Inst 92:179–181

    Article  PubMed  CAS  Google Scholar 

  24. Dummer R, Cozzio A, Meier S et al (2006) Standard and experimental therapy in cutaneous T-cell lymphomas. J Cutan Pathol 33(Suppl 1):52–57

    Article  PubMed  Google Scholar 

  25. Nishiyama M, Eguchi H (2009) Pharmacokinetics and pharmacogenomics in gastric cancer chemotherapy. Adv Drug Deliv Rev 61:402–407

    Article  PubMed  CAS  Google Scholar 

  26. Luu TH, Morgan RJ, Leong L et al (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a california cancer consortium study. Clin Cancer Res 14:7138–7142

    Google Scholar 

  27. Woyach JA, Kloos RT, Ringel MD et al (2009) Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab 94:164–170

    Google Scholar 

  28. Blumenschein GR, Jr, Kies MS, Papadimitrakopoulou VA et al (2008) Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs 26:81–87

    Google Scholar 

  29. Lobjois V, Frongia C, Jozan S et al (2009) Cell cycle and apoptotic effects of SAHA are regulated by the cellular microenvironment in HCT116 multicellular tumour spheroids. Eur J Cancer 45:2402–2411

    Article  PubMed  CAS  Google Scholar 

  30. Krug LM, Curley T, Schwartz L et al (2006) Potential role of histone deacetylase inhibitors in mesothelioma: clinical experience with suberoylanilide hydroxamic acid. Clin Lung Cancer 7:257–261

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Noguchi and Otsuki are employees of MSD K.K., a subsidiary of Merck & Co., Inc., and may own stock or stock options in the company. Mehta is an employee of Merck Sharp & Dohme, Corp., and may own stock or stock options in the company. The other authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Doi.

About this article

Cite this article

Doi, T., Hamaguchi, T., Shirao, K. et al. Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase I clinical trial. Int J Clin Oncol 18, 87–95 (2013). https://doi.org/10.1007/s10147-011-0348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-011-0348-6

Keywords

Navigation