Skip to main content
Log in

DNA Methylation Is Crucial for the Early Development in the Oyster C. gigas

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In vertebrates, epigenetic modifications influence gene transcription, and an appropriate DNA methylation is critical in development. Indeed, a precise temporal and spatial pattern of early gene expression is mandatory for a normal embryogenesis. However, such a regulation and its underlying mechanisms remain poorly understood in more distant organisms such as Lophotrochozoa. Thus, despite DNA in the oyster genome being methylated, the role of DNA methylation in development is unknown. To clarify this point, oyster genomic DNA was examined during early embryogenesis and found differentially methylated. Reverse transcriptase quantitative polymerase chain reaction indicated stage-specific levels of transcripts encoding DNA-methyltransferase (DNMT) and methyl-binding domain proteins. In addition, as highlighted by electronic microscopy and immunohistochemistry, the DNMT inhibitor 5-aza-cytidine induced alterations in the quantity and the localisation of methylated DNA and severe dose-dependent development alterations and was lethal after zygotic genome reinitiation. Furthermore, methyl-DNA-immunoprecipitation–quantitative polymerase chain reaction revealed that the transcription level of most of the homeobox gene orthologues examined, but not of the other early genes investigated, was inversely correlated with their specific DNA methylation. Altogether, our results demonstrate that DNA methylation influences gene expression in Crassostrea gigas and is critical for oyster development, possibly by specifically controlling the transcription level of homeobox orthologues. These findings provide evidence for the importance of epigenetic regulation of development in Lophotrochozoans and bring new insights into the early life of C. gigas, one of the most important aquaculture resources worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-aza-C:

5-Aza-cytidine

5-mC-IPed:

5-Methylcytosine immunoprecipitated

DNMT:

DNA methyl-transferase

hpf:

Hours post-fertilization

MBD:

Methyl-binding domain

MeDIP:

Methyl-DNA immunoprecipitation

PRC:

Polycomb repressive complex

References

  • Agger K, Cloos PA, Christensen J et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734

    Article  CAS  PubMed  Google Scholar 

  • Agger K, Cloos PA, Rudkjaer L et al (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23:1171–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bantignies F, Cavalli G (2006) Cellular memory and dynamic regulation of polycomb group proteins. Curr Opin Cell Biol 18:275–283

    Article  CAS  PubMed  Google Scholar 

  • Barucca M, Olmo E, Canapa A (2003) Hox and paraHox genes in bivalve molluscs. Gene 317:97–102

    Article  CAS  PubMed  Google Scholar 

  • Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France). Comp Biochem Physiol B Biochem Mol Biol 125:359–369

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Branciamore S, Chen ZX, Riggs AD, Rodin SN (2010) CpG island clusters and pro-epigenetic selection for CpGs in protein-coding exons of HOX and other transcription factors. Proc Natl Acad Sci USA 107:15485–15490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brero A, Easwaran HP, Nowak D et al (2005) Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. The Journal of cell biology 169:733–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Canapa A, Biscotti MA, Olmo E, Barucca M (2005) Isolation of Hox and ParaHox genes in the bivalve Pecten maximus. Gene 348:83–88

    Article  CAS  PubMed  Google Scholar 

  • Cervera AM, Bayley JP, Devilee P, McCreath KJ (2009) Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer 8:89

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Bernardo M, Castagnetti S, Bellomonte D et al (1999) Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos. Development 126:2171–2179

    PubMed  Google Scholar 

  • Di Lullo E, Haton C, Le Poupon C et al (2011) Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Development (Cambridge, England) 138:4991–5001

    Article  Google Scholar 

  • Dong P, Kaneuchi M, Watari H et al (2011) MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer 10:99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fabioux C, Huvet A, Lelong C et al (2004) Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas. Biochem Biophys Res Commun 320:592–598

    Article  CAS  PubMed  Google Scholar 

  • Fleury E, Huvet A, Lelong C et al (2009) Generation and analysis of a 29,745 unique expressed sequence tags from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible database: the GigasDatabase. BMC Genomics 10:341

    Article  PubMed Central  PubMed  Google Scholar 

  • Frobius AC, Matus DQ, Seaver EC (2008) Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I PLoS One 3:e4004

    Article  PubMed  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  • Gavery M, Roberts S (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483

    Article  PubMed Central  PubMed  Google Scholar 

  • Herpin A, Lelong C, Becker T et al (2005) Structural and functional evidences for a type 1 TGF-beta sensu stricto receptor in the lophotrochozoan Crassostrea gigas suggest conserved molecular mechanisms controlling mesodermal patterning across bilateria. Mech Dev 122:695–705

    Article  CAS  PubMed  Google Scholar 

  • Hershko AY, Kafri T, Fainsod A, Razin A (2003) Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 302:65–72

    Article  CAS  PubMed  Google Scholar 

  • Hueber SD, Bezdan D, Henz SR et al (2007) Comparative analysis of Hox downstream genes in Drosophila. Development 134:381–392

    Article  CAS  PubMed  Google Scholar 

  • Jones FS, Prediger EA, Bittner DA et al (1992) Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and −2.4. Proc Natl Acad Sci USA 89:2086–2090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jouaux a, Heude-Berthelin C, Sourdaine P et al (2010) Gametogenic stages in triploid oysters Crassostrea gigas: irregular locking of gonial proliferation and subsequent reproductive effort. J Exp Mar Biol Ecol 395:162–170

    Article  Google Scholar 

  • Kakoi S, Kin K, Miyazaki K, Wada H (2008) Early development of the Japanese spiny oyster (Saccostrea kegaki): characterization of some genetic markers. Zoological science 25:455–464

    Article  CAS  PubMed  Google Scholar 

  • Kin K, Kakoi S, Wada H (2009) A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 329:152–166

    Article  CAS  PubMed  Google Scholar 

  • Laforge B, Guez D, Martinez M, Kupiec J-J (2005) Modeling embryogenesis and cancer: an approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation. Prog Biophysics Mol Biol 89:93–120

    Article  CAS  Google Scholar 

  • Lan F, Bayliss PE, Rinn JL et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–694

    Article  CAS  PubMed  Google Scholar 

  • Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Layalle S, Volovitch M, Mugat B et al (2011) Engrailed homeoprotein acts as a signaling molecule in the developing fly. Development 138:2315–2323

    Article  CAS  PubMed  Google Scholar 

  • Lee PN, Callaerts P, De Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Song F, Ghosh S et al (2011) Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development. BMC Genomics 12:231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindeman LC, Winata CL, Aanes H et al (2010) Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. Int J Dev Biol 54:803–813

    Article  CAS  PubMed  Google Scholar 

  • Mas JC, Noël ES, Ober EA (2011) Chromatin modification in zebrafish development. Methods cell biol 104:401–428

    Article  CAS  Google Scholar 

  • Meissner A (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Mesías-Gansbiller C, Sánchez JL, Pazos AJ et al (2012) Conservation of Gbx genes from EHG homeobox in bivalve molluscs. Mol phylogenet evol 83:213–217

    Article  Google Scholar 

  • Nederbragt AJ, te WP, den DS V et al (2002) Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 212:330–337

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber D a, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nature rev Genet 6:893–904

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Parallé ML, Carpintero P, Pazos AJ et al (2005) The HOX gene cluster in the bivalve mollusc Mytilus galloprovincialis. Biochem Genet 43:417–424

    Article  PubMed  Google Scholar 

  • Raj A, Van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Genet 4 Spec No:1751–5.

    Google Scholar 

  • Regev A, Lamb MJ, Jablonka E (1998) The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol Biol Evol 15:880–891

    Article  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Riviere G, Fellous A, Franco A et al (2011) A crucial role in fertility for the oyster angiotensin-converting enzyme orthologue CgACE. PLoS One 6:e27833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivière G, Lienhard D, Andrieu T et al (2011) Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics 6:478–489

    Article  PubMed  Google Scholar 

  • Roberts SB, Gavery MR (2012) Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates? Front Physiol 2:116

    Article  PubMed Central  PubMed  Google Scholar 

  • Seo E, Basu-Roy U, Zavadil J et al (2011) Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 31:4593–4608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simeone A, D’Apice MR, Nigro V et al (1994) Orthopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila. Neuron 13:83–101

    Article  CAS  PubMed  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  PubMed  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 3042:3033–3042

    Article  Google Scholar 

  • Terranova R, Agherbi H, Boned A et al (2006) Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll. Proc Natl Acad Sci USA 103:6629–6634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomek W, Wollenhaupt K (2012) The “closed loop model” in controlling mRNA translation during development. Anim Reprod Sci 134(1–2):2–8

    Google Scholar 

  • Van den Akker WMR, Durston AJ, Spaink HP (2010) Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling transcriptional networks and cell movement during zebrafish gastrulation. Int J Dev Biol 54:55–62

    Article  PubMed  Google Scholar 

  • Vasanthi D, Mishra RK (2008) Epigenetic regulation of genes during development: a conserved theme from flies to mammals. J Genet Genomics 35:413–429

    Article  CAS  PubMed  Google Scholar 

  • Xiang H, Zhu J, Chen Q et al (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28:516–520

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Dayeh T, Kirkpatrick C, Taneera J (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA 1c levels in human pancreatic islets. Diabetologia 54:360–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Fang X, Guo X et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

  • Zwier MV, Verhulst EC, Zwahlen RD et al (2012) DNA methylation plays a crucial role during early Nasonia development. Insect Mol Biol 21:129–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr. Christophe Lelong (Caen, France) for scientific comments and are grateful to Alan Semple (Dublin, Ireland) for critical reading of the manuscript. This work was supported by grants from the French National Research Agency (ANR-08-GENM-041 ‘Gametogenes’), the European Community Council (FP7-KBBE-2009.3 245119 ‘Reproseed’) and a grant from the Taiwan Ministry of Science (NSC-99-2313-B-019-014-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Riviere.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 188 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riviere, G., Wu, GC., Fellous, A. et al. DNA Methylation Is Crucial for the Early Development in the Oyster C. gigas . Mar Biotechnol 15, 739–753 (2013). https://doi.org/10.1007/s10126-013-9523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9523-2

Keywords

Navigation