Skip to main content

Advertisement

Log in

Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Because of their great scientific and technological potentials, iron oxide nanoparticles (IONPs) have been the focus of extensive investigations in biomedicine over the past decade. Additionally, the surface plasmon resonance effect of gold nanoparticles (AuNPs) makes them a good candidate for photothermal therapy applications. The unique properties of both IONPs (magnetic) and AuNPs (surface plasmon resonance) may lead to the development of a multi-modal nanoplatform to be used as a magnetic resonance imaging (MRI) contrast agent and as a nanoheater for photothermal therapy. Herein, core–shell gold-coated IONPs (Au@IONPs) were synthesized and investigated as an MRI contrast agent and as a light-responsive agent for cancer photothermal therapy.

The synthesized Au@IONPs were characterized by UV–visible spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. The transverse relaxivity (r 2) of the Au@IONPs was measured using a 3-T clinical MRI scanner. Through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of the Au@IONs was examined on a KB cell line, derived from the epidermal carcinoma of a human mouth. Moreover, the photothermal effects of Au@IONPs in the presence of a laser beam (λ = 808 nm; 6.3 W/cm2; 5 min) were studied.

The results show that the Au@IONPs are spherical with a hydrodynamic size of 33 nm. A transverse relaxivity of 95 mM−1 S−1 was measured for the synthesized Au@IONPs. It is evident from the MTT results that no significant cytotoxicity in KB cells occurs with Au@IONPs. Additionally, no significant cell damage induced by the laser is observed. Following the photothermal treatment using Au@IONPs, approximately 70% cell death is achieved. It is found that cell lethality depended strongly on incubation period and the Au@IONP concentration.

The data highlight the potential of Au@IONPs as a dual-function MRI contrast agent and photosensitizer for cancer photothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shakeri-Zadeh A, Mansoori GA, Hashemian AR, Eshghi H, Sazgarnia A, Montazerabadi AR (2010) Cancerous cells targeting and destruction using folate conjugated gold nanoparticles. Dyn Biochem Process Biotechnol Mol Biol 4(1):06–12

    Google Scholar 

  2. Sazgarnia A, Montazerabadi AR, Bahreyni-Toosi MH, Ahmadi A (2013) Photosensitizing and radiosensitizing effects of mitoxantrone: combined chemo-, photo-, and radiotherapy of DFW human melanoma cells. Lasers Med Sci 28(6):1533–1539

    Article  PubMed  Google Scholar 

  3. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  PubMed  Google Scholar 

  5. Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran MB (2016) Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Physica E: Low-dimensional Systems and Nanostructures 81:308–314

    Article  CAS  Google Scholar 

  6. Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A (2014) The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol 90(5):351–356

    Article  CAS  PubMed  Google Scholar 

  7. Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beik J, Abed Z, Ghadimi-Daresajini A, Nourbakhsh M, Shakeri-Zadeh A, Ghasemi MS et al (2016) Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors. J Therm Biol 62:84–89

    Article  CAS  PubMed  Google Scholar 

  9. Shakeri-Zadeh A, Khoee S, Shiran M-B, Sharifi AM, Khoei S (2015) Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J Mater Chem B 3(9):1879–1887

    Article  CAS  Google Scholar 

  10. Shakeri-Zadeh A, Khoei S, Khoee S, Sharifi AM, Shiran M-B (2015) Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. Journal of Medical Ultrasonics 42(1):9–16

    Article  PubMed  Google Scholar 

  11. Shakeri-Zadeh A, Shiran M-B, Khoee S, Sharifi AM, Ghaznavi H, Khoei S (2014) A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model. J Biomater Appl 29(4):548–556

    Article  PubMed  Google Scholar 

  12. Montazerabadi AR, Oghabian MA, Irajirad R, Muhammadnejad S, Ahmadvand D, Delavari HH et al (2015) Development of gold-coated magnetic nanoparticles as a potential MRI contrast agent. Nano 10(04):1550048

    Article  CAS  Google Scholar 

  13. Chouly C, Pouliquen D, Lucet I, Jeune J, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255

    Article  CAS  PubMed  Google Scholar 

  14. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  15. Mehdizadeh A, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M et al (2014) The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci 29(3):939–948

    Article  PubMed  Google Scholar 

  16. Shakeri-Zadeh A, Kamrava SK, Farhadi M, Hajikarimi Z, Maleki S, Ahmadi A (2014) A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer. Lasers Med Sci 29(2):847–853

    Article  PubMed  Google Scholar 

  17. Aioub M, El-Sayed MA (2016) A real-time surface enhanced Raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J Am Chem Soc 138(4):1258–1264

  18. Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine 47(1):1–9

    Article  CAS  Google Scholar 

  19. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217

    Article  PubMed  Google Scholar 

  20. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11(6):673–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y, Yang M, Zhang J, Zhi X, Li C, Zhang C et al (2016) Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 10(2):2375–2385

  22. Sood A, Arora V, Shah J, Kotnala R, Jain TK (2016) Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J Exp Nanosci 11(5):370–382

    Article  CAS  Google Scholar 

  23. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. Magnetics, IEEE Transactions on 17(2):1247–1248

    Article  Google Scholar 

  24. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Article  CAS  Google Scholar 

  25. Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 45(48):8149–8152

    Article  CAS  Google Scholar 

  26. Cheng G, Walker ARH (2007) Synthesis and characterization of cobalt/gold bimetallic nanoparticles. J Magn Magn Mater 311(1):31–35

    Article  CAS  Google Scholar 

  27. Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A et al (2016) Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release 235:205–221

    Article  CAS  PubMed  Google Scholar 

  28. Guo Y, Zhang Z, Kim D-H, Li W, Nicolai J, Procissi D et al (2013) Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Int J Nanomedicine 8:3437

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khafaji M, Vossoughi M, Hormozi-Nezhad MR, Dinarvand R, Börrnert F, Irajizad A (2016) A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging. Sci Rep 6

  30. von Maltzahn G, Park J-H, Agrawal A, Bandaru NK, Das SK, Sailor MJ et al (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–900

  31. Melancon MP, Elliott A, Ji X, Shetty A, Yang Z, Tian M et al (2011) Theranostics with multifunctional magnetic gold nanoshells: photothermal therapy and T2* magnetic resonance imaging. Investig Radiol 46(2):132

    Article  Google Scholar 

  32. de Senneville BD, Roujol S, Jaïs P, Moonen CT, Herigault G, Quesson B (2012) Feasibility of fast MR-thermometry during cardiac radiofrequency ablation. NMR Biomed 25(4):556–562

    Article  PubMed  Google Scholar 

  33. Ma LL, Feldman MD, Tam JM, Paranjape AS, Cheruku KK, Larson TA et al (2009) Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 3(9):2686–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 142(11):2217–2229

  35. Vogl TJ, Mack MG, Müller P, Phillip C, Böttcher H, Roggan A et al (1995) Recurrent nasopharyngeal tumors: preliminary clinical results with interventional MR imaging-controlled laser-induced thermotherapy. Radiology 196(3):725–733

    Article  CAS  PubMed  Google Scholar 

  36. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wildeman MA, Nyst HJ, Karakullukcu B, Tan BI (2009) Photodynamic therapy in the therapy for recurrent/persistent nasopharyngeal cancer. Head & neck oncology 1(1):40

    Article  Google Scholar 

  38. Goudarzi S, Ahmadi A, Farhadi M, Kamrava SK, Mobarrez F, Omidfar K (2015) A new gold nanoparticle based rapid immunochromatographic assay for screening EBV-VCA specific IgA in nasopharyngeal carcinomas. J Appl Biomed 13(2):123–129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Habib Ghaznavi or S. Kamran Kamrava.

Ethics declarations

This research did not involve human participants and/or animals.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyvazzadeh, N., Shakeri-Zadeh, A., Fekrazad, R. et al. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med Sci 32, 1469–1477 (2017). https://doi.org/10.1007/s10103-017-2267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2267-x

Keywords

Navigation