Skip to main content
Log in

Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia

Interactions cours d’eau-aquifère sur le bassin versant de Maules Creek, vallée Namoi, Nouvelle-Galles du Sud, Australie

Interacciones entre el acuífero y los cursos de agua en la cuenca del Maules Creek, Valle de Namoi, Nueva Gales del Sur, Australia

澳大利亚新南威尔士州Namoi谷地Maules Creek 流域的地表水-含水层相互作用

Interacções rio-aquífero na bacia do Rio Maules, Vale de Namoi, Nova Gales do Sul, Austrália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The interaction between surface-water streams and groundwater in the Maules Creek catchment of northern New South Wales, Australia has been investigated using a wide range of techniques. Zones of groundwater discharge were mapped by measuring the temperature and fluid electrical-conductivity distribution in bores and surface water. Zones where surface water appears to be recharging the aquifer were investigated by measuring the vertical head gradient between the stream and adjacent bores and by estimates of the decreasing surface flow. Geological heterogeneity appears to be the most significant factor in controlling exchange. Lithological information was assembled using geophysical logging of existing bores, supplemented by the results of electrical resistivity imaging. A preliminary water balance was assembled from the available State records of groundwater abstraction for irrigation, rainfall, evapotranspiration and flow gauging in Maules Creek and the adjacent Namoi River. The analysis has demonstrated the complexity of these coupled systems and gives an indication of the most efficient techniques to be deployed in the field to investigate these complex but important systems.

Résumé

L’interaction entre cours d’eau de surface et nappe du captage de Maules Creek, Nord de la Nouvelle-Galles du Sud, Australie, a été étudiée en utilisant une large gamme de techniques. Les zones d’émergence de la nappe ont été cartographiées à l’aide de la distribution de la température et de la conductivité électrique de l’eau en sondage et en surface. Les zones de recharge de l’aquifère par de l’eau de surface ont été étudiées en mesurant le gradient hydraulique vertical entre le cours d’eau et les forages voisins et par estimation de la diminution du débit en surface. L’hétérogènéité des formations apparaît comme étant le principal facteur contrôlant les échanges. Les informations sur la lithologie ont été acquises par diagraphies dans les forages existants et complétées par imagerie électrique. Un premier bilan a été établi à partir des données de l’Etat sur les prèvements d’eau souterraine pour l’irrigation, la hauteur des pluies, l’évapotranspiration et le jaugeage des débits de Maules Creek et de la rivière Namoi voisine. L’analyse a montré la complexité de ces systèmes interdépendants et donne une indication sur les techniques les plus efficaces à mettre en œuvre sur le terrain pour comprendre ces systèmes complexes mais importants.

Resumen

Se ha investigado la interacción entre los cursos de aguas superficiales y el agua subterránea en la cuenca del Maules Creek del norte de Nueva Gales del Sur, Australia usando una amplia variedad de técnicas. Se mapearon las zonas de descarga de las aguas subterráneas midiendo la distribución de la temperatura y de la conductividad eléctrica del fluido en pozos y aguas superficiales. Las zonas donde las aguas superficiales están recargando al acuífero fueron investigadas midiendo del gradiente vertical de carga vertical entre los cursos de agua y los pozos adyacentes, estimando el flujo superficial decreciente. La heterogeneidad geológica aparece como el factor más significativo en el control del intercambio. Se ensambló la información litológica usando perfilajes geofísicos de pozos existentes, suplementado por los resultados del procesamiento de imágenes de resistividad eléctrica. Un balance de agua preliminar fue ensamblado a partir de los registros oficiales disponibles de la extracción de aguas subterráneas para riego, precipitaciones, evapotranspiración y mediciones de flujo en el Maules Creek, y en el adyacente Río Namoi. El análisis ha demostrado la complejidad de estos sistemas acoplados y da una indicación de las técnicas más eficientes a ser desplegadas en el campo para investigar estos complejos pero importantes sistemas.

摘要

应用多种方法研究了澳大利亚新南威尔士北部Maules Creek流域河流和地下水之间的相互作用。通过测量井孔和地表水的温度和流体电导率分布绘出了地下水排泄区。通过测量河流与邻近钻孔的垂向水头梯度, 及计算地面径流量损失研究了地表水补给含水层的区域。地质非均质性似为控制水量交换的最主要因素。通过已有钻孔的地球物理测井, 辅以电阻率成像结果整理了岩性资料。通过可用的政府档案, 包括用于灌溉的地下水抽水量、降雨量、蒸发-蒸腾量和Maules Creek和邻近的Namoi河的测流量, 做了初步的水量均衡计算。分析表明这一耦合系统相当复杂, 并就如何在区域上研究这一复杂且重要的系统给出了最有效方法。

Resumo

A interacção entre a água superficial dos rios e a água subterrânea na bacia do Rio Maules, no norte de Nova Gales do Sul, Austrália, tem sido investigada usando uma grande variedade de técnicas. Foram mapeadas zonas de descarga de água subterrânea, através da medição e da análise da distribuição da temperatura e da condutividade eléctrica em furos e em água superficial. As zonas em que a água superficial parece estar a recarregar o aquífero foram investigadas medindo o gradiente hidráulico vertical entre o rio e os furos adjacentes e pela estimativa do decréscimo do fluxo superficial. As heterogeneidades geológicas parecem ser o factor mais significativo no controlo destas trocas. Foram reunidas informações sobre a litologia, a partir de perfis geofísicos realizados em furos existentes complementadas por resultados de perfis de resistividade eléctrica. Foi esboçado um balanço hidrológico preliminar, a partir dos registos disponíveis no Estado relativos às extracções de água subterrânea para a rega, à precipitação, à evapotranspiração e ao caudal medido nos rios Maules e Namoi, que lhe é adjacente. A análise evidenciou a complexidade destes sistemas associados e deu uma indicação sobre as técnicas mais eficientes a serem empregues no campo para estudar estes sistemas complexos, mas importantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andersen MS, Acworth RI (2007) Hydrochemical investigations of surface water groundwater interactions in a sub-catchment in the Namoi Valley, NSW, Australia. In: Ribeiro L, Chambel A, Condesso de Melo MT (eds) Groundwater and Ecosystems, Proceedings of the XXXV IAH Congress, Lisbon, September 2007

  • Andersen MS, Baron L, Gudbjerg J, Chapellier D, Jakobsen R, Gregersen J, Postma D (2007) Nitrate-rich groundwater discharging into a coastal marine environment. J Hydrol 336:98–114. doi:10.1016/j.jhydrol.2006.12.023

    Article  Google Scholar 

  • Baskaran S, Brodie RS, Ransley T, Baker P (2009a) Time-series measurements of stream and sediment temperature for understanding river-groundwater interactions: Border Rivers and Lower Richmond catchments, Australia. Aust J Earth Sci 56:21–30

    Article  Google Scholar 

  • Baskaran S, Ransley T, Brodie RS, Baker P (2009b) Investigating groundwater-river interactions using environmental tracers. Aust J Earth Sci 56:13–19

    Article  Google Scholar 

  • Braaten R, Gates G (2003) Groundwater-surface water interactions in inland New South Wales: a scoping study. Water Sci Technol 48(7):215–224

    Google Scholar 

  • Brodie RS, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An adaptive management framework for connected groundwater-surface water resources in Australia. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Brodie RS, Baskaran S, Ransley T, Spring J (2009) Seepage meter: progressing a simple method of directly measuring water flow between surface water and groundwater systems. Aust J Earth Sci 56(1):3–11

    Article  Google Scholar 

  • Cey E, Rudolph DL, Parkin GW, Aravena R (1998) Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. J Hydrol 210:21–37

    Article  Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277:74–88

    Article  Google Scholar 

  • Department of Mineral Resources (1998) Gunnedah coalfield north regional geology (1:100,000 map). Geological survey of NSW, Department of Mineral Resources, Sydney

    Google Scholar 

  • Department of Mineral Resources (2002) Geology: integration and upgrade, NSW Western regional assessments Brigalow Belt South Bioregion (Stage 2). Geological Survey of NSW, Department of Mineral Resources, Sydney

    Google Scholar 

  • Department of Natural Resources (2006) Bore log data base. Department of Natural Resources, NSW, Sydney

    Google Scholar 

  • Department of Natural Resources (2007) Surface water hydrograph data base. Department of Natural Resources, NSW, Sydney

    Google Scholar 

  • Duff JH, Toner B, Jackman AP, Avanzino RJ, Triska FJ (2000) Determination of groundwater discharge into a sand and gravel bottom river: a comparison of chloride dilution and seepage meter techniques. Verh Internat Verein Limnol 27:406–411

    Google Scholar 

  • Findlay S (1995) Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnol Oceanogr 40:159–164

    Google Scholar 

  • Fleckenstein JH, Niswonger RG, Fogg GE (2006) River-aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44:837–852

    Article  Google Scholar 

  • Fullagar I, Brodie R, Sundaram B, Hostetler S, Baker P (2006) Managing connected surface water and groundwater resources. Bureau of Rural Sciences, Canberra, http://www.brs.gov.au. August 2008

    Google Scholar 

  • Halford KJ, Mayer GC (2000) Problems associated with estimating ground water discharge and recharge from stream-discharge records. Ground Water 38:331–342

    Article  Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98–111

    Article  Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29:89–98

    Article  Google Scholar 

  • Harvey JW, Wagner BJ, Bencala KE (1996) Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange. Water Resour Res 32:2441–2451

    Article  Google Scholar 

  • Hinkle SR, Duff JH, Triska FJ, Laenen A, Gates EB, Bencala KE, Wentz DA, Silva SR (2001) Linking hyporheic flow and nitrogen cycling near the Willamette River: a large river in Oregon, USA. J Hydrol 244:157–180

    Article  Google Scholar 

  • Huggenberger P, Hoehn E, Beschta R, Woessner W (1998) Abiotic aspects of channels and floodplains in riparian ecology. Freshw Biol 40:407–425

    Article  Google Scholar 

  • Humphreys WF (2009) Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol J 17:5–21

    Google Scholar 

  • Ivkovic KM (2009) A top-down approach to characterize aquifer–river interaction processes. J Hydrol 365:145–155

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater surface water and their interactions: a review. Hydrol Earth Syst Sci Discuss 3:1809–1850

    Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22:140–147

    Google Scholar 

  • Lee DR, Cherry JA (1978) A field exercise on groundwater flow using seepage meters and mini-piezometers. J Geol Education 25:6–10

    Google Scholar 

  • Lee DR, Hynes HB (1977) Identification of groundwater discharge zones in a reach of Hillman Creek in southern Ontario. Water Pollut Res J Can 13:121–133

    Google Scholar 

  • Libelo EL, MacIntyre WG (1994) Effects of surface-water movement on seepage meter measurements of flow through the sediment–water interface. Appl Hydrogeol 4:49–54

    Article  Google Scholar 

  • Morrice JA, Vallet HM, Dahm CN, Campana ME (1997) Alluvial characteristics, groundwater–surface water exchange and hydrological retention in headwater streams. Hydrol Proc 11:253–267

    Article  Google Scholar 

  • Murdoch LC, Kelly SE (2003) Factors affecting the performance of conventional seepage meters. Water Resour Res. 39(6):SWC2.1–SWC2.10. doi:10.1029/2002WR001347

  • Peterson EW, Sickbert TB (2006) Stream water bypass through a meander neck, laterally extending the hyporheic zone. Hydrogeol J 14:1443–1451

    Article  Google Scholar 

  • Schmidt C, Conant B Jr, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347:292–307

    Article  Google Scholar 

  • Shinn EA, Reich CD, Hickey TD (2002) Seepage meters and Bernoulli’s revenge. Estuaries 25:126–132

    Article  Google Scholar 

  • Silburn DM, Montgomery J (2004) Deep drainage under irrigated cotton in Australia: a review. In: WATERpak a guide for irrigation management in cotton. Section 2.4. Cotton Research and Development Corporation/Australian Cotton Cooperative Research Centre, Narrabri, Australia, pp 29–40

    Google Scholar 

  • Silliman SE, Ramirez J, McCabe RL (1995) Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J Hydrol 167:99–119

    Article  Google Scholar 

  • Sinclair P, Barrett C, Williams RM (2005) Impact of groundwater extraction on Maules Creek: Upper Namoi Valley, NSW, Australia. In: Acworth RI, Merrick N, Macky G (eds) Where waters meet. Proceedings of the NZHS-IAH-NZSSS 2005 Conference, Auckland, 29 November–1 December 2005

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Stonestrom DA, Constanz J (2003) Heat as a tool for studying the movement of ground water near streams. USGS Circular 1260, US Geological Survey, Denver, CO

  • Tennakoon SB, Milroy SP (2003) Crop water use and water use efficiency on irrigated cotton farms in Australia. Agric Water Manage 61:179–194

    Article  Google Scholar 

  • Williams D, Montgomery J (2008) Bales per megalitre: an industry wide evaluation of the 2006/2007 season. In: Proceedings, Fourteenth Australian Cotton Research Conference, Brisbane, 12–14 August 2008

  • Winter TC (2001) Ground water and surface water: the linkage tightens, but challenges remain. Hydrol Proc 15:3605–3606. doi:10.1002/hyp.504

    Article  Google Scholar 

  • Winter TC (2007) The role of ground water in generating streamflow in headwater areas and in maintaining base flow. J Am Water Resour Assoc 43:15–25

    Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. USGS Circular 1139, US Geological Survey, Denver, CO

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water 38:423–429

    Article  Google Scholar 

  • Wroblicky GJ, Campana ME, Valett HM, Dahm CN (1998) Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resour Res 43:317–328

    Article  Google Scholar 

  • Young RW, Young ARM, Price DM, Wray RAL (2002) Geomorphology of the Namoi alluvial Plain, northwestern New South Wales. Aust J Earth Sci 49:509–523

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding by the Cotton Catchment Community CRC (Project No. 2.02.03). We would also like to thank the Department of Natural Resources (DNR) for allowing us access to their system of monitoring wells and their lithological borehole logs. We thank Dawit Berhane (DNR) for his help in the field. Also we thank Brad Morris and Mitch Harley for assistance with the DGPS equipment. We thank Sue and Ken Crawford for providing accommodation and meals when in the field. Finally we acknowledge the helpful reviews from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin S. Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, M.S., Acworth, R.I. Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol J 17, 2005–2021 (2009). https://doi.org/10.1007/s10040-009-0500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0500-9

Keywords

Navigation