Skip to main content
Log in

Discriminant analysis for estimation of groundwater age from hydrochemistry and well construction: application to New Zealand aquifers

Analyse discriminante pour l’estimation de l’âge des eaux souterraines à l’aide de l’hydrogéochimie et caractéristiques des forages : Application aux aquifères de Nouvelle Zélande

Análisis discriminante para la estimación de la edad del agua subterránea a partir de la hidroquímica y de la construcción de pozos: Aplicación a acuíferos de Nueva Zelanda

基于水化学和井深估算地下水年龄的判别分析 : 应用于新西兰含水层

Análise discriminante para estimação da idade da água subterrânea a partir de dados hidroquímicos e de construção de furos: Aplicação a aquíferos da Nova Zelândia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

An Erratum to this article was published on 19 November 2009

An Erratum to this article was published on 19 November 2009

Abstract

Concentrations of tritium, chlorofluorocarbons and sulfur hexafluoride have been measured at over 100 groundwater monitoring sites across New Zealand, followed by interpretation of groundwater age distribution using the exponential-piston flow model. Interpreted mean residence times ranged from less than 1 year to more than 100 years, with the 25th, 50th (median) and 75th percentiles being approximately 10, 40 and 100 years, respectively. Classification functions derived from discriminant analysis and based on nine input variables (well depth, electrical conductivity and the concentrations of the ions Na, K, Ca, Mg, HCO3, Cl and SO4) allowed assignment of 71% of the sites to the correct of four age categories (mean residence time 10 years or less, 11–40 years, 41–100 years, or more than 100 years). The discriminant analysis classification functions were more effective than regression methods for estimating groundwater age from hydrochemistry and well depth, and can thus be used to predict the groundwater age category for any monitoring site in New Zealand.

Résumé

Les concentrations en tritium, chlorofluorocarbones et hexafluorure de soufre de plus de 100 sites de suivi des eaux souterraines de Nouvelle Zélande ont été déterminées et interprétées pour l’estimation de la distribution des âges en utilisant un modèle combiné piston et exponentiel. Les temps moyens de résidence calculés vont de un à plus de 100 ans, avec les centiles 25, 50 (médiane) et 75 environ de 10, 40 et 100 ans respectivement. Les fonctions de classifications dérivées de l’analyse discriminante et basées sur neuf variables d’entrées (profondeur des forages, conductivité électrique, concentrations en Na, K, Ca, Mg, HCO3, Cl et SO4) permettent d’assigner correctement 71% des sites dans quatre catégories d’âge (temps moyen de résidence 10 ans ou moins, 11 à 40 ans, 41 à 100 ans et plus de 100 ans). Les fonctions de classification de l’analyse discriminante sont plus efficaces que les méthodes de régression pour l’estimation des âges des eaux souterraines à partir des données chimiques et profondeurs des forages et peuvent donc être utilisées pour prédire les catégories d’âge des eaux souterraines des sites de suivi en Nouvelle-Zélande.

Resumen

Se midieron concentraciones de tritio, clorofluorcarbonos y hexafluoruro de azufre en más de 100 sitios de monitoreo de aguas subterráneas en Nueva Zelanda, seguido de la interpretación de la distribución de la edad del agua subterránea usando el modelo de flujo exponencial – pistón. Los tiempos medios de residencia interpretados variaron de menos de un año a más de 100 años, siendo los percentiles 25, 50 (mediana) y 75 de aproximadamente 10, 40 y 100 años, respectivamente. Las funciones de clasificación desarrolladas a partir del análisis discriminante y basadas en nueve variables de entrada (profundidad del pozo, conductividad eléctrica y las concentraciones de los iones Na, K, Ca, Mg, HCO3, Cl y SO4) permitieron encasillar el 71% de los sitios para cuatro categoría de edades correctas (tiempo medio de residencia de diez años o menos, 11 a 40 años, 41 a 100 años, o más que 100 años). Las funciones de clasificación del análisis discriminante fueron más efectivas que los métodos de regresión para estimar la edad del agua subterránea a partir de la hidroquímica y de la profundidad del pozo, y puede así ser usada para predecir la categoría de edad del agua subterránea para cualquier sitio de monitoreo en Nueva Zelanda.

摘要

在遍布新西兰的100多口监测井中测定3H、CFCs和SF6的含量, 进而利用指数-活塞流模型对地下水年龄分布进行解释。结果显示, 地下水平均滞留时间从小于一年到大于100多年均有分布, 小于10、40、100年的样品数量分别占全部样品数量的25%、50%、75%。从判别分析引伸来的分类函数基于九个输入变量 (井深、电导率、Na、 K、Ca、Mg、HCO3、Cl 和 SO4的含量), 对该区域的71%的样品分配到这四个年龄段 (平均滞留年龄小于10年、11到40年、41到100年、100年以上) 。基于水化学和井深两因子估算地下水年龄时, 判别分析分类函数比回归方法更有效, 所以能用来预测新西兰各监测区地下水的年龄段。

Resumo

Concentrações de trítio, clorofluorcarbonetos e hexafluoreto de enxofre têm sido medidos em mais de 100 locais de monitorização de água subterrânea na Nova Zelândia, a que se seguiu uma interpretação da distribuição da idade da água subterrânea usando o modelo de fluxo exponencial de pistão. Os tempos de residência média interpretados variaram desde menos de um ano até mais de 100 anos, com os percentis de 25, 50 (mediana) e 75 aproximadamente de 10, 40 e 100 anos, respectivamente. As funções de classificação derivadas de análises discriminantes e baseadas em nove variáveis imputadas (profundidade dos furos, condutividade eléctrica e a concentração dos iões Na, K, Ca, Mg, HCO3, Cl e SO4) permitiram a atribuição de 71% dos locais à categoria correcta dentro de quatro intervalos de idade (tempo médio de residência de 10 anos ou menos, 11 a 40 anos, 41 a 100 anos, ou mais de 100 anos). As funções de classificação de análises discriminantes foram mais efectivas que os métodos de regressão para estimar a idade da água subterrânea a partir de dados hidroquímicos e da profundidade dos furos, e pode então ser usada para predizer o intervalo de idade para qualquer furo de monitorização na Nova Zelândia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeschbach-Hertig W, Schlosser P, Stute M, Simpson HJ, Ludin A, Clark JF (1998) A 3H/3He study of ground water flow in a fractured bedrock aquifer. Ground Water 36:661–670

    Google Scholar 

  • Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31:2319–2339

    Article  Google Scholar 

  • Broers HP (2004) The spatial distribution of groundwater age for different geohydrological situations in the Netherlands: implications for groundwater quality monitoring at the regional scale. J Hydrol 299:84–106

    Article  Google Scholar 

  • Burns DA, Plummer LN, McDonnell JJ, Busenberg E, Casile GC, Kendall C, Hooper RP, Freer JE, Peters NE, Beven K, Schlosser P (2003) The geochemical evolution of riparian ground water in a forested piedmont catchment. Ground Water 41:913–925

    Article  Google Scholar 

  • Burton WC, Plummer LN, Busenberg E, Lindsey BD, Gburek WJ (2002) Influence of fracture anisotropy on ground water ages and chemistry, Valley and Ridge Province, Pennsylvania. Ground Water 40:242–257

    Article  Google Scholar 

  • Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age dating tools: the alluvium and terrace system of Central Oklahoma. Water Resour Res 28:2257–2283

    Article  Google Scholar 

  • Cook PG, Solomon DK (1995) The transport of atmospheric trace gases to the water table: implications for groundwater dating with chlorofluorocarbons and Krypton-85. Water Resour Res 31:263–270

    Article  Google Scholar 

  • Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. J Hydrol 191:245–265

    Article  Google Scholar 

  • Cunnold D, Weiss R, Prinn R, Hartley D, Simmonds P, Fraser P, Miller B, Alyea F, Porter L (1997) GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994. J Geophys Res 102:1259–1269

    Article  Google Scholar 

  • Darling WG, Morris B, Stuart ME, Gooddy DC (2005) Groundwater age indicators from public supplies tapping the chalk aquifer of Southern England. J Chart Inst Water Environ Manage 19:30–40

    Article  Google Scholar 

  • Daughney CJ, Reeves R (2005) Definition of hydrochemical facies in the New Zealand National Groundwater Monitoring Programme. J Hydrol NZ 44:105–130

    Google Scholar 

  • Daughney CJ, Reeves RR (2006) Analysis of temporal trends in New Zealand’s groundwater quality based on data from the National Groundwater Monitoring Programme. J Hydrol NZ 45:41–62

    Google Scholar 

  • Daughney CJ, Baker T, Jones A, Hanson C, Davidson P, Thompson M, Reeves RR, Zemansky GM (2007a) Comparison of sampling methods for state of the environment monitoring in New Zealand. J Hydrol NZ 46:19–31

    Google Scholar 

  • Daughney CJ, Jones A, Baker T, Hanson C, Davidson P, Reeves RR, Zemansky GM, Thompson M (2007b) A national protocol for state of the environment groundwater sampling in New Zealand. Miscellaneous Series 5, Institute of Geological & Nuclear Sciences, Wellington, New Zealand

  • Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752

    Article  Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of ground-water systems. Hydrogeol J 13:263–287

    Article  Google Scholar 

  • Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32:289–296

    Article  Google Scholar 

  • Happell JD, Price RM, Top Z, Swart PK (2003) Evidence for the removal of CFC-11, CFC-12, and CFC-113 at the groundwater-surface water interface in the Everglades. J Hydrol 279:94–105

    Article  Google Scholar 

  • Heaton THE, Vogel JC (1981) "Excess air" in groundwater. J Hydrol 50:201–216

    Article  Google Scholar 

  • Helsel DR, Cohn TA (1988) Estimation of descriptive statistics for multiply censored water quality data. Water Resour Res 24:1997–2004

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources. Techniques of water-resources investigations of the United States Geological Survey, Book 4, Chapter A3. US Geological Survey, Reston, VA. http://water.usgs.gov/pubs/twri/twri4a3. Cited October 2008

  • Katz BG, Plummer LN, Busenberg E, Revesz KM, Jones BF, Lee TM (1995) Chemical evolution of groundwater near a sinkhole lake, northern Florida 2. Chemical patterns, mass transfer modelling, and rates of mass transfer reactions. Water Resour Res 31:1565–1584

    Article  Google Scholar 

  • Katz BG, Böhlke JK, Hornsby HD (2001) Timescales for nitrate contamination of spring waters, northern Florida, USA. Chem Geol 179:167–186

    Article  Google Scholar 

  • Katz BG, Chelette AR, Pratt TR (2004) Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA. J Hydrol 289:36–61

    Article  Google Scholar 

  • Lalbat F, Blavoux B, Banton O (2007) Description of a simple hydrochemical indicator to estimate groundwater residence time in carbonate aquifers. Geophys Res Lett 34. doi:10.1029/2007/GL031390

  • Lambrakis N, Antonakos A, Panagopoulis G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38:1862–1872

    Article  Google Scholar 

  • MacDonald AM, Darling WG, Ball DF, Oster H (2003) Identifying trends in groundwater quality using residence time indicators: an example from the Permian aquifer of Dumfries, Scotland. Hydrogeol J 11:504–517

    Article  Google Scholar 

  • Maiss M, Brenninkmeijer CAM (1998) Atmospheric SF6: trends, sources and prospects. Environ Sci Technol 32:3077–3086

    Article  Google Scholar 

  • Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers, I.: models and their applicability. J Hydrol 57:22–31

    Google Scholar 

  • Maloszewski P, Zuber A (1991) Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. Water Resour Res 27:1937–1945

    Article  Google Scholar 

  • McGuire KJ, DeWalle DR, Gburek WJ (2002) Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J Hydrol 261:132–149

    Article  Google Scholar 

  • Molson JW, Frind EO (2005) How old is the water? Simulating groundwater age at the watershed scale. IAHS Publ 297:482–488

    Google Scholar 

  • Moore KB, Ekwurkel B, Esser BK, Hudson GB, Moran JE (2006) Sources of groundwater nitrate revealed using residence time and isotope methods. Appl Geochem 21:1016–1029

    Article  Google Scholar 

  • Morgenstern U (2004) Assessment of age distribution in groundwater. Proceedings of the 2nd Asia Pacific Association of Hydrology and Water Resources Conference, vol 1, Singapore, 5–8 July 2004, pp 580–587

  • Morgenstern U (2007) Lake Taupo catchment groundwater age distribution and implications for future landuse impacts. Environment Waikato Report TR 2007/49, Environment Waikato, Hamilton, New Zealand

  • Morgenstern U, Taylor CB (2005) Low-level tritium measurement using electrolytic enrichment and LSC. Proc. Int. Symp. Quality Assurance for Analytical Methods in Isotope Hydrology. International Atomic Energy Agency, Vienna

  • Morris B, Stuart ME, Darling WG, Gooddy DC (2005) Use of groundwater age indicators in risk assessment to aid water supply operational planning. J Chart Inst Water Environ Manage 19:41–48

    Article  Google Scholar 

  • New Zealand Ministry for the Environment (2007) Groundwater quality in New Zealand: state and trends 1995–2006. Publication number ME831, Ministry for the Environment, Wellington, New Zealand. www.mfe.govt.nz/publications/ser/. Cited October 2008

  • New Zealand Ministry of Health (2005) Drinking-water standards for New Zealand 2005. Ministry of Health, Wellington, New Zealand

    Google Scholar 

  • Petrides B, Cartwright I, Weaver TR (2006) The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria. Aust Hydrogeol J 14:1522–1543

    Article  Google Scholar 

  • Prinn RG, Weiss RF, Fraser PJ, Simmonds PG, Cunnold DM, Alyea FN, O'Doherty S, Salameh P, Miller BR, Huang J, Wang RHJ, Hartley DE, Harth C, Steele LP, Sturrock G, Midgely PM, McCulloch A (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res 105(D14):17751–17792

    Article  Google Scholar 

  • Rademacher LK, Clark JF, Hudson GB, Erman DC, Erman NA (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin, Nevada County, California. Chem Geol 179:37–51

    Article  Google Scholar 

  • Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer. Water Resour Res 30:421–433

    Article  Google Scholar 

  • Riley JA, Steinhorst RK, Winter GV, Williams RE (1990) Statistical analysis of the hydrochemistry of ground waters in Columbia River Basalts. J Hydrol 119:245–262

    Article  Google Scholar 

  • Stewart M, Morgenstern U (2001) Age and source of groundwater from isotope tracers. In: Rosen MR, White PA (eds) Groundwaters of New Zealand. New Zealand Hydrological Society, Wellington, New Zealand, pp 161–183

    Google Scholar 

  • Stewart MK, Taylor CB (1981) Environmental isotopes in New Zealand hydrology 1. Introduction: the role of oxygen-18, deuterium and tritium in hydrology. N Z J Sci 24:295–311

    Google Scholar 

  • Stewart MK, Thomas JT (2008) A conceptual model of flow to the Waikoropupu Springs, NW Nelson, New Zealand, based on hydrodynamic and tracer (18O, Cl, 3H and CFC) evidence. Hydrol Earth Syst Sci 12:1–19

    Article  Google Scholar 

  • Thompson TM, Butler JH, Daube BC, Dutton GS, Elkins JW, Hall BD, Hurst DF, King DB, Kline ES, Lafleur BG, Lind J, Lovitz S, Mondeel DJ, Montzka SA, Moore FL, Nance JD, Neu JL, Romashkin PA, Scheffer A, Snible WJ (2004) Halocarbons and other atmospheric trace species. Climate Monitoring and Diagnostics Laboratory Summary Report No. 27. Ch. 5, NOAA, Boulder, CO, pp 115–135

  • van der Raaij RW (2003) Age dating of New Zealand groundwaters using sulphur hexafluoride. MSc Thesis, Victoria University of Wellington, New Zealand

  • Walker SJ, Weiss RF, Salameh PK (2000) Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride. J Geophys Res 105:14285–14296

    Google Scholar 

  • Wassenaar LI, Hendry MJ, Harrington N (2006) Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. Environ Sci Technol 40:4626–4632

    Article  Google Scholar 

  • Weissman GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer. Water Resour Res 38:16.1–16.8

    Article  Google Scholar 

  • Zuber A, Witczak S, Rózański K, Śliwka I, Opoka M, Mochalski P, Kuc T, Karlikowska J, Kania J, Jackowicz-Korczyński M, Duliński M (2005) Groundwater dating with 3H and SF6 in relation to mixing patterns, transport modelling and hydrochemistry. Hydrol Proc 19:2247–2275

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank personnel from New Zealand regional councils for assistance with sample collection. This manuscript was greatly improved by the insightful comments of Managing Editor Maria-Theresia Schafmeister, Associate Editor Werner Aeschbach-Hertig and three anonymous reviewers. Dr. Michael Stewart (GNS Science) is thanked for reviewing an early version of this manuscript. This research was funded by the New Zealand Foundation for Research, Science and Technology (Contract C05X0706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Daughney.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10040-009-0546-8

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

National Groundwater Monitoring Programme site details, interpreted ages and discriminant analysis age category predictions (PDF 23 kb)

ESM 2

National Groundwater Monitoring Programme site hydrochemistry (PDF 23 kb)

ESM 3

Concentrations of tritium (in Tritium Units, TU), chlorofluorocarbons (CFC-11 and CFC-12 in parts per trillion, ppt) and sulphur hexafluoride (SF6 in ppt) at National Groundwater Monitoring Programme sites (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daughney, C.J., Morgenstern, U., van der Raaij, R. et al. Discriminant analysis for estimation of groundwater age from hydrochemistry and well construction: application to New Zealand aquifers. Hydrogeol J 18, 417–428 (2010). https://doi.org/10.1007/s10040-009-0479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0479-2

Keywords

Navigation