Skip to main content

Advertisement

Log in

A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management

Comparaison des méthodes de désagrégation spatiale stochastiques et déterministes pour la modélisation du potentiel de réalimentation des eaux souterraines soumis au changement climatique en East Anglia (Royaume-Uni): implications pour la gestion des ressources en eau souterraine

Una comparación de métodos estocásticos y determinísticos de reducción de escala para modelar la recarga potencial de aguas subterráneas bajo el cambio climático en East Anglia (Gran Bretaña): implicaciones para la gestión de los recursos de aguas subterráneas

模拟气候变化下英国东安格利亚潜在地下水补给的随机性和确定性降尺度方法的比较 : 对地下水资源管理的启示

Comparação de métodos de regionalização estocásticos e determinísticos para a modelação da recarga potencial de águas subterrâneas em condições de alterações climáticas em Anglia Oriental, Reino Unido: implicações para a gestão dos recursos hídricos subterrâneos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater resource estimates require the calculation of recharge using a daily time step. Within climate-change impact studies, this inevitably necessitates temporal downscaling of global or regional climate model outputs. This paper compares future estimates of potential groundwater recharge calculated using a daily soil-water balance model and climate-change weather time series derived using change factor (deterministic) and weather generator (stochastic) methods for Coltishall, UK. The uncertainty in the results for a given climate-change scenario arising from the choice of downscaling method is greater than the uncertainty due to the emissions scenario within a 30-year time slice. Robust estimates of the impact of climate change on groundwater resources require stochastic modelling of potential recharge, but this has implications for groundwater model runtimes. It is recommended that stochastic modelling of potential recharge is used in vulnerable or sensitive groundwater systems, and that the multiple recharge time series are sampled according to the distribution of contextually important time series variables, e.g. recharge drought severity and persistence (for water resource management) or high recharge years (for groundwater flooding). Such an approach will underpin an improved understanding of climate change impacts on sustainable groundwater resource management based on adaptive management and risk-based frameworks.

Résumé

L'estimation des ressources en eau souterraine nécessite le calcul de la réalimentation quotidienne. Dans le cadre des études d'impact du changement climatique, ceci requiert la désagrégation spatiale des résultats des modèles climatiques globaux ou régionaux. Le présent article compare les estimations futures de la réalimentation potentielle des eaux souterraines calculées à partir d'un modèle de bilan en eau quotidien dans les sols et de la série chronologique des changements climatiques, dérivée de méthodes utilisant soit un facteur de changement (déterministe), soit un générateur météorologique (stochastique) sur Coltishall, au Royaume-Uni. L'incertitude sur les résultats pour un scenario de modification climatique donné sera supérieure dans le cas de la méthode de désagrégation à celle issue des scenarii d'émissions sur un intervalle de 30 ans. Une estimation solide des impacts du changement climatique sur les ressources en eau souterraine nécessite une modélisation stochastique de la réalimentation potentielle, mais ceci a des conséquences sur les moteurs d'exécution des modèles. Il est recommandé d'utiliser la modélisation stochastique de la réalimentation potentielle sur des systèmes aquifères vulnérables ou sensibles, et d'échantillonner les séries temporelles de réalimentation de manière concordante avec la distribution des variables importantes dans le contexte fixé, comme la sévérité et la persistance des déficits de réalimentation (pour la gestion des ressources en eau) ou les années de forte réalimentation (pour les inondations). Une telle approche servira de base à une meilleure compréhension des impacts du changement climatique sur la gestion durable des ressources en eau souterraine, basée sur une gestion adaptative et sur un cadre fixé par les risques.

Resumen

La estimación de los recursos subterráneos requiere el cálculo de la recarga usando un paso de tiempo diario. Dentro de los estudios de impacto de cambio climático, esto inevitablemente necesita de salidas de reducción de escala temporal de modelos de clima global o regional. Este trabajo compara estimaciones futuras de la recarga potencial de agua subterráneas calculada usando un modelo de balance de agua diario en el suelo y una serie meteorológica temporal de cambio climático desarrollada usando un método de factor de cambio (determinístico) y un método generador meteorológico (estocástico) para Coltishall (Gran Bretaña) . La incerteza en los resultados para un escenario dado de cambio climático proveniente de la elección del método de reducción de escala es mayor que la incerteza debido al escenario de emisiones dentro de una porción de tiempo de 30 años. Las estimaciones robustas del impacto del cambio climático en los recursos de aguas subterráneas requieren la modelación estocástica de la recarga potencial, pero esto tiene implicaciones para los tiempos de ejecución de los modelos de aguas subterráneas. Se recomienda que el modelado estocástico de la recarga potencial sea usado en sistemas de aguas subterráneas vulnerables o sensibles, y que las series de tiempo de recarga múltiple sean muestreadas de acuerdo a la distribución de series temporales variables contextualmente importantes, p. ej. la recarga afectada por la severidad y la persistencia de sequías (para la gestión del recurso agua) o años de alta recarga (para anegamientos de aguas subterráneas). Tal enfoque apuntala un mejor entendimiento de los impactos del cambio climático en la gestión sustentable del recurso de las aguas subterráneas, basado en un esquema adaptable de gestión y riesgos.

摘要

摘要 地下水资源估算需要利用逐日步长计算的补给量。在气候变化影响研究中, 这使全球或区域气候模型输出在时间上的降尺度处理成为必要。本文对比了利用日土壤水分平衡模型和根据变化因子 (确定的) 和天气发生器 (随机的) 方法确定的气候变化天气时间序列计算出的未来英国科提肖地区潜在地下水补给估算。起于降尺度方法选择的在给定气候变化情景下的结果不确定性较大, 归因于一个30年的时间片段内排放情景。气候变化对地下水资源的影响的稳健估计需要对潜在补给进行随机模拟, 但这包括地下水模型的运行时间。建议将潜在补给的随机模拟用于脆弱或敏感的地下水系统, 各补给时间序列依据前后重要时间序列的变化如干旱季节补给的缺乏和持续时间 (与水资源管理有关) 或高补给年 (如地下洪水) 等进行取样。这一方法将继续加深对基于适应性管理和基于风险框架的气候变化对可持续地下水资源管理影响的理解。

Resumo

As estimativas de recursos hídricos subterrâneos requerem o cálculo da recarga utilizando um intervalo de tempo diário. Em estudos de impacte das alterações climáticas tal implica inevitavelmente a regionalização (downscaling) temporal dos resultados de modelos climáticos globais ou regionais. Este artigo compara estimativas futuras de recarga potencial de águas subterrâneas, utilizando um modelo de balanço hídrico diário do solo e séries temporais meteorológicas de alterações climáticas derivadas dos métodos factor de alteração (determinístico) e gerador climático (estocástico), para Coltishall, Reino Unido. A incerteza nos resultados para um determinado cenário de alterações climáticas, decorrente da escolha do método de regionalização, é maior do que a incerteza devida ao cenário de emissões para um intervalo de tempo de 30 anos. Estimativas robustas do impacte das alterações climáticas nos recursos hídricos subterrâneos exigem a modelação estocástica da recarga potencial, havendo contudo implicações para os tempos de execução dos modelos de águas subterrâneas. Recomenda-se a utilização da modelação estocástica da recarga potencial em sistemas de águas subterrâneas vulneráveis ou sensíveis, e a obtenção de séries temporais múltiplas de recarga de acordo com a distribuição de variáveis importantes em termos contextuais, tais como a severidade e persistência de uma seca (para a gestão dos recursos hídricos), ou anos de recarga elevada (para inundações provocadas pelas águas subterrâneas). Este tipo de abordagem irá contribuir para uma melhor compreensão dos impactes das alterações climáticas na gestão sustentável dos recursos hídricos subterrâneos, com base em quadros de risco e gestão adaptativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome

  • Arnell NW (2004) Climate-change impacts on river flows in Britain: the UKCIP02 scenarios. Water Environ J 18(2):112–117

    Article  Google Scholar 

  • Boorman DB, Hollis JM, Lilly A (1995) Hydrology of soil types: a hydrologically based classification of the soils of the UK. Report No. 126, Institute of Hydrology, Wallingford, UK

  • Borg H, Grimes DW (1986) Depth development of roots with time: an empirical description. Trans ASAE 29:194–197

    Google Scholar 

  • Brisson N (1998) An analytical solution for the estimation of the critical available soil water fraction for a single layer water balance model under growing crops. Hydrol Earth Sys Sci 2:221–231

    Article  Google Scholar 

  • Chen ZH, Grasby SE, Osadetz KG (2002) Predicting average annual groundwater levels from climatic variables: an empirical model. J Hydrol 260(1–4):102–117

    Article  Google Scholar 

  • Conservation Engineering Division (1986) Urban hydrology for small watersheds. Natural Resources Conservation Service Technical Release-55, USDA, Washington, DC

  • Cooper DM, Wilkinson WB, Arnell NW (1995) The effects of climate changes on aquifer storage and river baseflow. Hydrol Sci J 40(5):615–631

    Google Scholar 

  • Croley TE, Luukkonen CL (2003) Potential effects of climate change on ground water in Lansing, Michigan. J Am Water Resour Assoc 39(1):149–163

    Article  Google Scholar 

  • Dessai S, Hulme M (2007) Assessing the robustness of adaptation decisions to climate change uncertainties: a case study on water resources management in the east of England. Global Environ Change 17(1):59–72

    Article  Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Clim Change 69:245–268

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  • Gawith M, Street R, Westaway R, Steynor A (2008) Application of the UKCIP02 climate change scenarios: reflections and lessons learnt. Global Environ Change 19(1):113–121. doi:10.1016/j.gloenvcha.2008.09.005

    Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838

    Article  Google Scholar 

  • Giorgi F, Hewitson B, Christensen J, Hulme M, Von Storch H, Whetton P, Jones R, Mearns L, Fu C (2001) Regional climate information: evaluation and projections. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) Climate Change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 583–638

    Google Scholar 

  • Herrera-Pantoja M, Hiscock KM (2008) The effects of climate change on potential groundwater recharge in Great Britain. Hydrol Process 22(1):73–86

    Article  Google Scholar 

  • Hess TM, Counsell, C (2000) A water balance simulation model for teaching and learning: WaSim. Paper presented at the ICID British Section Irrigation and Drainage Research Day, 29 March 2000, HR Wallingford, Wallingford, UK. http://hdl.handle.net/1826/2455. Cited 3 Feb 2009

  • Hewitson BC, Crane RG (2002) Self-organizing maps: application to synoptic climatology. Clim Res 22:13–26

    Article  Google Scholar 

  • Hirekhan M, Gupta SK, Mishra KL (2007) Application of WaSim to assess performance of a subsurface drainage system under semi-arid monsoon climate. Agric Water Manage 88(1–3):224–234

    Article  Google Scholar 

  • Hodge CAH, Burton RGO, Corbett WM, Evans R, Seale RS (1984) Soils and their use in England and Wales. Soil Survey of England and Wales Bulletin no. 13, Soil Survey of England and Wales, Harpenden, UK

  • Holman IP (2006) Climate change impacts on groundwater recharge: uncertainty, shortcomings and the way forward? Hydrogeol J 14(5):637–647

    Article  Google Scholar 

  • Holman IP, Nicholls RJ, Berry PM, Harrison PA, Audsley E, Shackley S, Rounsevell MDA (2005) A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK: II. results. Clim Change 71:43–73

    Article  Google Scholar 

  • Hough MN, Jones RJA (1997) The United Kingdom Meteorological Office Rainfall and Evaporation Calculation System: MORECS version 2.0: an overview. Hydrol Earth Sys Sci 1:227–239

    Google Scholar 

  • Hulme M, Jenkins GJ, Lu X, Turnpenny JR, Mitchell TD, Jones RG, Lowe J, Murphy JM, Hassell D, Boorman P, McDonald R, Hill S (2002) Climate change scenarios for the United Kingdom: the UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK

    Google Scholar 

  • IPCC (2007) Climate Change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jones PD, Salmon M (1995) Development and integration of a stochastic weather generator into a crop growth model for European agriculture, MARS Project. Final Report to Institute of Remote Sensing Applications, Agricultural Information Systems, Contract no. 5631-93-12, ED ISP GB, ISPRA, Lombardy, Italy

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol 338(3–4):237–250

    Article  Google Scholar 

  • Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Change 92:41–63

    Article  Google Scholar 

  • Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, Wilby RL (2007) A daily weather generator for use in climate change studies. Environ Modell Softw 22:1705–1719

    Article  Google Scholar 

  • Kirshen PH (2002) Potential impacts of global warming on groundwater in eastern Massachusetts. J Water Res Pl-ASCE 128(3):216–226

    Article  Google Scholar 

  • Kruger A, Ulbrich U, Speth P (2001) Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios. Phys Chem Earth Pt B 26(11–12):853–861

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Şen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Loaiciga HA, Maidment D, Valdes JB (2000) Climate change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227:173–194

    Article  Google Scholar 

  • Markoff MS, Cullen AC (2008) Impact of climate change on Pacific Northwest hydropower. Clim Change 87(3–4):451–469

    Article  Google Scholar 

  • Mearns LO, Giorgi F, Whetton P, Pabon D, Hulme M, Lal M (2003) Guidelines for use of climate scenarios developed from regional climate model experiments. Data Distribution Centre of the Intergovernmental Panel on Climate Change. Available at http://www.ipcc-data.org/guidelines/dgm_no1_v1_10-2003.pdf. Cited 3 Feb 2009

  • Morris BL, Lawrence ARL, Chilton PJC, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. Early Warning and Assessment Report Series, RS 03-3. United Nations Environment Programme, Nairobi, Kenya

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press, Cambridge

    Google Scholar 

  • Pahl-Wost C, Sendzimir J, Jeffrey P, Aerts J, Berkamp G, Cross K (2007) Managing change towards adaptive water management through social learning. Ecol Soc 12(2):30. Available at www.ecologyandsociety.org/vol12/iss2/art30/. Cited 3 Feb 2009

    Google Scholar 

  • Prudhomme C, Davies H (2008) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate. Clim Change 93(1–2). doi:10.1007/s10584-008-9461-6

  • Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: Where are we now? Hydrol Process 16(6):1137–1150. doi:doi:10.1016/j.jhydrol.2006.08.006

    Article  Google Scholar 

  • Raes DD, van Aelst P (1985) The field parameters of the BUDGET model. Internal note, Lab. of Soil and Water Eng., University of Leuven, Belgium

  • Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17:182–190

    Article  Google Scholar 

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  • Rivington M, Miller D, Matthews KB, Russell G, Bellocchi G, Buchan K (2008) Evaluating regional climate model estimates against site-specific observed data in the UK. Clim Change 88(2):157–185

    Article  Google Scholar 

  • Rushton KR, Ward C (1979) The estimation of groundwater recharge. J Hydrol 41:345–361

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(2):18–39

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  • Schibek J, Allen DM (2006) Modelled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42(11):W11405. doi:10.1029/2005WR004742

    Article  Google Scholar 

  • Semenov MA (2007) Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric Forest Meteorol 144:127–138

    Google Scholar 

  • Smedema LK, Vlotman WF, Rycroft D (2004) Modern land drainage: planning design and management of agricultural drainage systems. Balkema, London

    Google Scholar 

  • van Roosmalen L, Christensen BSB, Sonnenborg TO (2007) Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone J 6(3):554–571

    Article  Google Scholar 

  • Vidal JP, Wade SD (2008) Multimodel projections of catchment-scale precipitation regime. J Hydrol 353(1–2):143–158

    Google Scholar 

  • Vidale PL, Luthi D, Wegmann R, Schar C (2007) European summer climate variability in a heterogeneous multi-model ensemble. Clim Change 81:209–232

    Article  Google Scholar 

  • Watts M, Goodess CM, Jones PD (2004a) The CRU daily weather generator. BETWIXT Technical Briefing Note 1, Climatic Research Unit, University of East Anglia. Available at http://www.cru.uea.ac.uk/cru/projects/betwixt/. Cited 3 Feb 2009

  • Watts M, Goodess CM, Jones PD (2004b) Validation of the CRU daily weather generator. BETWIXT Technical Briefing Note 4, Climatic Research Unit, University of East Anglia. Available at http://www.cru.uea.ac.uk/cru/projects/betwixt/. Cited 3 Feb 2009

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resour Res 42:W02419. doi:10.1029/2005WR004065

    Article  Google Scholar 

  • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for the use of climate scenarios developed from statistical downscaling methods. Supporting material for the Intergovernmental Panel on Climate Change. Available at http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf. Cited 3 Feb 2009

  • Wilks DS, Wilby RL (1999) The weather generator game: a review of stochastic weather models. Prog Phys Geogr 23:329–357

    Google Scholar 

  • Willows RI, Connell RK (eds) (2003) Climate adaptation: risk uncertainty and decision-making. UKCIP, Oxford

    Google Scholar 

  • Winter TC (2000) The vulnerability of wetlands to climate change: a hydrologic landscape perspective. J Am Water Resour Assoc 36(2):305–311

    Article  Google Scholar 

  • Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15(5):891–901

    Article  Google Scholar 

  • Yusoff I, Hiscock KM, Conway D (2002) Simulation of the impacts of climate change on groundwater resources in eastern England. In: Hiscock KM, Rivett MO, Davidson RM (eds) Sustainable groundwater development. Geol Soc Lond Spec Publ 193:325-344

Download references

Acknowledgements

The Engineering and Physical Sciences Research Council-funded BETWIXT (Built EnvironmenT: Weather scenarios for investigation of Impacts and eXTremes) project and Clare Goodess (BETWIXT co-ordinator) are gratefully acknowledged for the provision of the daily time-series data. The United Kingdom Climate Impacts Programme (UKCIP) is acknowledged for use of the UKCIP02 climate change scenarios, and Dr Juan Rodríguez Díaz and Dr Jerry Knox (Cranfield University) for the change factors. We thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Holman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holman, I.P., Tascone, D. & Hess, T.M. A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeol J 17, 1629–1641 (2009). https://doi.org/10.1007/s10040-009-0457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0457-8

Keywords

Navigation