Skip to main content
Log in

Chemical Changes During 6 Years of Decomposition of 11 Litters in Some Canadian Forest Sites. Part 1. Elemental Composition, Tannins, Phenolics, and Proximate Fractions

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Slowing or even cessation of litter decomposition with time is well-known, but there is insufficient understanding of the chemical changes that contribute to increasing recalcitrance. Samples from the Canadian Intersite Decomposition Experiment (CIDET) were used to determine 6-year chemical changes for all 11 litters from a site with rapid initial decomposition (Morgan Arboretum, MAR) and for three litters at three colder sites. Six-year mass remaining was 17–37% at MAR, with higher values at the colder sites. Atomic C/N ratios declined and phenolics and condensed tannins generally decreased to minimal values. However, for the three species compared across four sites, phenolics and tannins showed small increases for species with the lowest initial values and also tended to increase with increasing mass loss. For the foliar litters at MAR, there was an average increase in proportion of acid-unhydrolyzable residue (AUR) and decreases in proportions of acid-hydrolyzable (ACID) and extractable fractions, with final AUR/(ACID + AUR) ratios within 0.55–0.66. Principal component analysis showed that foliar litters (and to a lesser extent wood) became more alike after 6 years, decomposition being associated with increase of Fe, Al, N, and AUR concentrations and decrease of K, Mg, tannins, phenolics, and non-polar and water-soluble fractions. However, litters were also affected by site soil chemistry, with some high 6-year accumulations of Ca, Mg, Fe, Al, Mn, and Mg at two sites. Increasing recalcitrance likely arises from increasing dominance of complex, less-soluble organic structures, collectively represented by AUR, together with increases in heavy elements such as Al and Fe, which also specifically bind and stabilize organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. Now deceased.

References

  • Aber JD, Melillo JM, McClaugherty CA. 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–8.

    Article  Google Scholar 

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC. 2008. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biol 14:2636–60.

    Google Scholar 

  • Almendros G, Dorado J, González-Vila FJ, Blanco MJ, Lankes U. 2000. 13C NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol Biochem 32:793–804.

    Article  CAS  Google Scholar 

  • Arthur MA, Fahey TJ. 1990. Mass and nutrient content of decaying boles in an Engelmann spruce—subalpine fir forest, Rocky Mountain National Park, Colorado. Can J For Res 20:730–7.

    Article  CAS  Google Scholar 

  • Berg B, Cortina J. 1995. Nutrient dynamics in some decomposing leaf and needle litter types in a Pinus sylvestris forest. Scand J For Res 10:1–11.

    Article  Google Scholar 

  • Berg B, Hannus K, Popoff T, Theander O. 1982. Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest. I. Can J Bot 60:1310–19.

    CAS  Google Scholar 

  • Berg B, Steffan KT, McClaugherty C. 2007. Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82:29–39.

    Article  CAS  Google Scholar 

  • Bockheim JG, Leide JE. 1986. Litter and forest-floor dynamics in a Pinus resinosa plantation in Wisconsin. Plant Soil 96:393–406.

    Article  CAS  Google Scholar 

  • Bockheim JG, Jepsen EA, Heisey DM. 1991. Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin. Can J For Res 21:803–12.

    Article  CAS  Google Scholar 

  • Coûteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P. 1998. Chemical composition and carbon mineralization potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–95.

    Article  Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.

    Article  PubMed  CAS  Google Scholar 

  • deCatanzaro JB, Kimmins JP. 1985. Changes in the weight and nutrient composition of litter fall in three forest ecosystem types on coastal British Columbia. Can J Bot 63:1046–56.

    Article  CAS  Google Scholar 

  • Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL. 2006. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J Chem Ecol 32:1415–29.

    Article  PubMed  CAS  Google Scholar 

  • Edmonds RL. 1980. Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington. Can J For Res 10:327–37.

    Google Scholar 

  • Edmonds RL. 1984. Long-term decomposition and nutrient dynamics in Pacific silver fir needles in western Washington. Can J For Res 14:395–400.

    CAS  Google Scholar 

  • Edmonds RL. 1987. Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington, USA. Can J For Res 17:499–509.

    Article  CAS  Google Scholar 

  • Foster JR, Lang GE. 1982. Decomposition of red spruce and balsam fir boles in the White Mountains of New Hampshire. Can J For Res 12:617–26.

    Article  CAS  Google Scholar 

  • Fröberg M, Kleja DB, Hagedorn F. 2007. The contribution of fresh litter to dissolved organic carbon leached from a coniferous forest floor. Eur J Soil Sci 58:108–14.

    Article  Google Scholar 

  • Graham RL, Cromack K Jr. 1982. Mass, nutrient content, and decay rate of dead boles in rain forests of Olympic National Park. Can J For Res 12:511–21.

    Article  CAS  Google Scholar 

  • Grier CC. 1978. A Tsuga heterophylla–Picea sitchensis ecosystem of coastal Oregon: decomposition and nutrient balances of fallen logs. Can J For Res 8:198–206.

    Article  CAS  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, LIDET. 2009. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite competition. Global Change Biol 15:1320–38.

    Article  Google Scholar 

  • Heim A, Frey B. 2004. Early stage litter decomposition rates for Swiss forests. Biogeochemistry 70:301–15.

    Article  Google Scholar 

  • Herman J, Moorhead D, Berg B. 2008. The relationship between rates of lignin and cellulose decay in aboveground forest litter. Soil Biol Biochem 40:2620–6.

    Article  CAS  Google Scholar 

  • Hernes PJ, Hedges JI. 2004. Tannin signatures of barks, needles, leaves, cones, and wood at the molecular level. Geochim Cosmochim Acta 68:1293–307.

    Article  CAS  Google Scholar 

  • Johansson M-B, Kögel I, Zech W. 1986. Changes in the lignin fraction of spruce and pine needle litter during decomposition as studied by some chemical methods. Soil Biol Biochem 18:611–19.

    Article  CAS  Google Scholar 

  • Kalra YP, Maynard DG, Radford FG. 1989. Microwave digestion of tree foliage for multi-element analysis. Can J For Res 19:981–5.

    Article  CAS  Google Scholar 

  • Karonen M, Ossipov V, Ossipova S, Kapari L, Loponen J, Matsumura H, Kohno Y, Mikami C, Sakai Y, Izuta T, Pihlaja K. 2006. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. J Chem Ecol 32:1445–58.

    Article  PubMed  CAS  Google Scholar 

  • Keenan RJ, Prescott CE, Kimmins JP, Pastor J, Dewey B. 1996. Litter decomposition in western red cedar and western hemlock forests on northern Vancouver Island, British Columbia. Can J Bot 74:1626–34.

    Article  Google Scholar 

  • Kirschbaum MUF. 2006. The temperature dependence of organic-matter decomposition–still a topic of debate. Soil Biol Biochem 38:2510–18.

    Article  CAS  Google Scholar 

  • Kraus TEC, Yu Z, Preston CM, Dahlgren RA, Zasoski RJ. 2003. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. J Chem Ecol 29:703–30.

    Article  PubMed  CAS  Google Scholar 

  • Lambert RL, Lang GE, Reiners WA. 1980. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 61:1460–73.

    Article  Google Scholar 

  • Lemma B, Nilsson I, Kleja DB, Olsson M, Knicker H. 2007. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biol Biochem 39:2317–28.

    Article  CAS  Google Scholar 

  • Lindroth RL, Hwang S-Y. 1996. Clonal variation in foliar chemistry of quaking aspen (Populus tremuloides Michx.). Biochem Syst Ecol 24:357–64.

    Article  CAS  Google Scholar 

  • Lindroth RL, Osier TL, Barnhill HRH, Wood SA. 2002. Effects of genotype and nutrient availability on phytochemistry of trembling aspen (Populus tremuloides Michx.) during leaf senescence. Biochem Syst Ecol 30:297–307.

    Article  CAS  Google Scholar 

  • Liu L, King JS, Giardina CP, Booker FL. 2009. The influence of chemistry, production and community composition on leaf litter decomposition under elevated atmospheric CO2 and tropospheric O3 in a northern hardwood ecosystem. Ecosystems 12:401–16.

    Article  CAS  Google Scholar 

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Feger K-H. 2000. Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–92.

    Article  CAS  Google Scholar 

  • Lorenz K, Preston CM, Krumrei S, Feger K-H. 2004. Decomposition of needle/leaf litter from Scots pine, black cherry, common oak, and beech at a conurbation forest site. Eur J For Res 123:177–88.

    Google Scholar 

  • Lousier JD, Parkinson D. 1978. Chemical element dynamics in decomposing leaf litter. Can J Bot 56:2795–812.

    Article  CAS  Google Scholar 

  • MacLean DA, Wein RW. 1978. Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Can J Bot 56:2730–49.

    Article  CAS  Google Scholar 

  • Madritch M, Donaldson JR, Lindroth RL. 2006. Genetic identity of Populus tremuloides litter influences decomposition and nutrient release in a mixed forest stand. Ecosystems 9:528–37.

    Article  CAS  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A. 2008. The global stoichiometry of litter nitrogen mineralization. Science 321:684–6.

    Article  PubMed  CAS  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–75.

    Article  Google Scholar 

  • McColl JG, Powers RF. 2003. Decomposition of small woody debris of California red fir: mass loss and elemental content over 17 years. Soil Sci Soc Am J 67:1227–33.

    CAS  Google Scholar 

  • Means JE, MacMillan PC, Cromack K Jr. 1992. Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon. U.S.A. Can J For Res 22:1536–46.

    Article  CAS  Google Scholar 

  • Meentemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–72.

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Muratone JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.

    Article  CAS  Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 115:189–98.

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B, Prescott C, Camiré C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S. 1999. Litter decomposition rates in Canadian forests. Global Change Biol 5:75–82.

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD, CIDET Working Group. 2006. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems 9:46–62.

    Article  CAS  Google Scholar 

  • Morrison IK. 2003. Decomposition and element release from confined jack pine needle litter on and in the feathermoss layer. Can J For Res 33:16–22.

    Article  CAS  Google Scholar 

  • Nault JR, Preston CM, Trofymow JA, Fyles J, Kozak L, Siltanen M, Titus B. 2009a. Applicability of diffuse reflectance Fourier transform infrared spectroscopy to the chemical analysis of decomposing foliar litter in Canadian forests. Soil Sci 174:130–42.

    Article  CAS  Google Scholar 

  • Nault JR, Preston CM, Trofymow JA. 2009b. Prediction of nuclear magnetic resonance carbon fractions in decomposing forest litter utilizing diffuse reflectance infrared Fourier transform spectroscopy and partial least-squares regression. Soil Sci 174:249–57.

    Article  CAS  Google Scholar 

  • Nierop KGJ, Preston CM, Kaal J. 2005. Thermally assisted hydrolysis and methylation of purified tannins from plants. Anal Chem 77:5604–14.

    Article  PubMed  CAS  Google Scholar 

  • Nordén B, Berg B. 1990. A non-destructive method (solid state 13C NMR) for determining organic chemical components of decomposing litter. Soil Biol Biochem 22:271–5.

    Article  Google Scholar 

  • Osono T, Takeda H. 2004a. Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest. J For Res 9:23–31.

    Article  CAS  Google Scholar 

  • Osono T, Takeda H. 2004b. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol Res 19:593–602.

    Article  Google Scholar 

  • Osono T, Takeda H. 2005. Decomposition of organic chemical components in relation to nitrogen dynamics in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:41–9.

    Article  CAS  Google Scholar 

  • Palviainen M, Finér L, Kurka A-M, Mannerkoski H, Piirainen S, Starr M. 2004. Release of potassium, calcium, iron and aluminum from Norway spruce, Scots pine and silver birch logging residues. Plant Soil 259:123–36.

    Article  CAS  Google Scholar 

  • Parsons WFJ, Bockheim JG, Lindroth RL. 2008. Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems 11:505–19.

    Article  CAS  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–4.

    Article  PubMed  CAS  Google Scholar 

  • Peltonen PA, Vapaavuori E, Julkunen-Tiitto R. 2005. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol. 11:1305–24.

    Article  Google Scholar 

  • Piene H, Van Cleve K. 1978. Weight loss of litter and cellulose bags in a thinned white spruce forest in interior Alaska. Can J For Res 8:42–6.

    Article  CAS  Google Scholar 

  • Prescott CE, Vesterdal L, Preston CM, Simard SW. 2004. Influence of initial chemistry on decomposition of foliar litter in contrasting forest types in British Columbia. Can J For Res 34:1714–29.

    Article  CAS  Google Scholar 

  • Preston CM, Forrester PD. 2004. Chemical and carbon-13 cross-polarization magic-angle spinning nuclear magnetic resonance characterization of logyard fines from British Columbia. J Environ Qual 33:767–77.

    Article  PubMed  CAS  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic–angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–13.

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow JA, Niu J, Fyfe CA. 1998. 13C CPMAS NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. For Ecol Manage 111:51–68.

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Canadian Intersite Decomposition Experiment Working Group. 2000. Variability in litter quality and its relationship to litter decay in Canadian forests. Can J Bot 78:1269–87.

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Flanagan LB. 2006a. Decomposition, δ13C, and the “lignin paradox”. Can. J. Soil Sci. 86:235–45.

    CAS  Google Scholar 

  • Preston CM, Bhatti JS, Flanagan LB, Norris C. 2006b. Stocks, chemistry, and sensitivity to climate change of dead organic matter along the Canadian Boreal Forest Transect Case Study. Clim Change 74:223–51.

    Article  CAS  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA, CIDET Working Group. 2009. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, 13C solid-state NMR spectroscopy and the meaning of “lignin”. Ecosystems, in press.

  • Quideau SA, Graham RC, Oh S-W, Hendrix PF, Wasylishen RE. 2005. Leaf litter decomposition in a chaparral ecosystem, Southern California. Soil Biol Biochem 37:1988–98.

    Article  CAS  Google Scholar 

  • Reichstein M, Kätterer T, Andrén O, Ciais P, Schulze E-D, Cramer W, Papale D, Valentini R. 2005. Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences 2:317–21.

    CAS  Google Scholar 

  • Riipi M, Ossipov V, Lempa K, Haukioja E, Koricheva J, Ossipova S, Pihlaja K. 2002. Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics? Oecologia 130:380–90.

    Article  Google Scholar 

  • Rustad LE. 1994. Element dynamics along a decay continuum in a red spruce ecosystem in Maine, USA. Ecology 75:867–79.

    Article  Google Scholar 

  • Ryan MG, Mellilo JM, Ricca A. 1990. A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–71.

    Article  Google Scholar 

  • SAS Institute. 2007. SAS Online Doc- SAS/STAT Version 9.1.3. SAS institute Inc. SAS Campus Drive, Cary NC 27513. http://support.sas.com/onlinedoc/913/docMainpage.jsp.

  • Scalbert A, Monties B, Janin G. 1989. Tannins in wood: comparison of different estimation methods. J Agric Food Chem 37:1324–9.

    Article  CAS  Google Scholar 

  • Scheel T, Dörfler C, Kalbitz K. 2007. Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci. Soc. Am. J. 71:64–74.

    CAS  Google Scholar 

  • Sjöberg G, Nilsson SI, Persson T, Karlsson P. 2004. Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biol Biochem 36:1761–8.

    Article  CAS  Google Scholar 

  • Sollins P, Cline SP, Verhoeven T, Sachs D, Spycher G. 1987. Patterns of log decay in old-growth Douglas-fir forests. Can J For Res 17:1585–95.

    Article  Google Scholar 

  • Staaf H, Berg B. 1982. Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long-term decomposition in a Scots pine forest II. Can J Bot 60:1561–8.

    CAS  Google Scholar 

  • Stark S, Julkunen-Tiitto R, Kumpula J. 2007. Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil sutrient cycling. Oecologia 151:486–98.

    Article  PubMed  Google Scholar 

  • Stohlgren TJ. 1988. Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter. Can J For Res 18:1136–44.

    Article  Google Scholar 

  • Trofymow JA, CIDET Working Group. 1998. The Canadian Intersite Decomposition Experiment (CIDET): Project and Site Establishment Report. Victoria (BC): Inf. Rep. BC-X-378. Canadian Forest Service: Natural Resources Canada.

    Google Scholar 

  • Trofymow JA, Preston CM, Prescott CE. 1995. Litter quality and its potential effect on decay rates of materials from Canadian forests. Water Air Soil Pollut 82:215–26.

    Article  CAS  Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C, Duschene L, Kozak L, Kranabetter M, Visser S. 2002. Rates of litter decomposition over six years in Canadian forests: Influence of litter quality and climate. Can J For Res 32:789–804.

    Article  Google Scholar 

  • Valachovic YS, Caldwell BA, Cromack K Jr, Griffiths RP. 2004. Leaf litter chemistry controls on decomposition of Pacific Northwest trees and woody shrubs. Can J For Res 34:2131–47.

    Article  CAS  Google Scholar 

  • Wilson MA, Heng S, Goh KM, Pugmire RJ, Grant DM. 1983. Studies of litter and acid insoluble soil organic matter fractions using 13C-cross-polarization nuclear magnetic resonance spectroscopy with magic angle spinning. J Soil Sci 34:83–97.

    Article  CAS  Google Scholar 

  • Xu XN, Shibata H, Enoki T. 2006. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: dynamics of mineral nutrients. J Forestry Res (China) 17:1–6.

    Article  Google Scholar 

  • Yavitt JB, Fahey TJ. 1986. Litter decay and leaching from the forest floor in Pinus contorta (lodgepole pine) ecosystems. J Ecol 74:525–45.

    Article  Google Scholar 

  • Zhang CF, Meng FR, Trofymow JA, Arp PA. 2007. Modeling mass and nitrogen remaining in litterbags for Canadian forest and climate conditions. Can J Soil Sci 87:413–32.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Ann Harris and Charlotte Norris (PFC) for chemical analyses, Mark Harmon (Oregon State University) for the initial PA and the Climate Change and Ecosystem Processes Networks of the Canadian Forest Service for support.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Caroline M. Preston.

Additional information

The members of the CIDET Working Group are listed in Appendix.

Author Contributions

Tony Trofymow is the leader of the whole CIDET study, Jason Nault did the proximate analyses, Caroline Preston was the lead on the tannins, phenolics, and elemental analyses, and Carolyn Smyth did the PCA. Caroline Preston was the lead author, but all authors contributed to data analysis, writing, figures, and revisions. CIDET is an author as per the agreement for data sharing and publication and provided the samples and data on % mass remaining.

Appendix

Appendix

The Canadian Intersite Decomposition Experiment (CIDET) Working Group is a group of researchers cooperating in a 12-year study of litter decomposition and who provided the litter samples, initial litter chemistry and mass loss results reported in this paper. Members include: J. Trofymow (Study leader), Canadian Forest Service (CFS), Pacific Forestry Centre, Victoria, BC; D. Anderson, College of Agriculture, University of Saskatchewan, Saskatoon, SK; C. Camiré, Faculté Foresterie et de Géomatique, Univ. Laval, Quebec, QC; L. Duchesne, CFS, Great Lakes Forestry Centre, Sault Ste. Marie, ON; J. Fyles, McGill University, Ste–Anne–de–Bellevue, QC; L. Kozak, Agriculture Canada, Land Resource Unit, University of Saskatchewan, Saskatoon, SK; M. Kranabetter, BC Ministry of Forests, Smithers, BC; T. Moore, McGill University, Montreal, QC; I. Morrison, CFS, Great Lakes Forestry Centre, Sault Ste. Marie, ON; C. Prescott, University of British Columbia, Vancouver, BC; M. Siltanen and S. ZoltaiFootnote 1, CFS, Northern Forestry Centre, Edmonton, AB; S. Smith, Agriculture and Agrifood Canada, Pacific Agri-Food Research Centre, Summerland, BC; B. Titus, CFS, Pacific Forestry Centre, Victoria, BC; S. Visser, University of Calgary, Calgary, AB; R. Wein, University of Alberta, Edmonton, AB; D. White, Dep. Indian and Northern Affairs, Whitehorse, YT; L. Kutny, Inuvik Research Station, Inuvik, NT. Further information on CIDET is available on the web at www.pfc.cfs.nrcan.gc.ca/subsite/cidet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preston, C.M., Nault, J.R., Trofymow, J.A. et al. Chemical Changes During 6 Years of Decomposition of 11 Litters in Some Canadian Forest Sites. Part 1. Elemental Composition, Tannins, Phenolics, and Proximate Fractions. Ecosystems 12, 1053–1077 (2009). https://doi.org/10.1007/s10021-009-9266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-009-9266-0

Keywords

Navigation