Skip to main content

Advertisement

Log in

Prevalence of Heterotrophy and Atmospheric CO2 Emissions from Aquatic Ecosystems

  • Commentary
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Recent, parallel developments in the study of freshwater and marine ecosystems have provided evidence that net heterotrophic systems (those in which respiratory organic matter destruction exeeds photosynthetic production) are more prevalent than hitherto believed, including most rivers, oligo- to mesotrophic lakes and some oligotrophic regions of the ocean. In parallel, these aquatic ecosystems have been shown to act as CO2 sources to the atmosphere, as expected from the heterotrophic nature of the communities they contain. The prevalence of net heterotrophic aquatic ecosystems indicates that they must receive significant inputs of organic carbon from adjacent ecosystems, assigning an important role to the lateral exchanges of carbon between land and aquatic ecosystems, between coastal and open ocean ecosystems, as well as internal redistribution within large or complex aquatic ecosystems in determining their metabolic status and the gaseous exchange with the atmosphere. The examination of the carbon budget of ecosystems requires, therefore, an integrative approach that accounts for exchanges between compartments often studied in isolation. These recent findings conform a new paradigm of the functioning of aquatic ecosystems, and the metabolic connectivity between ecosystems in the biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Agustí S, Duarte CM, Vaqué D, Hein M, Gasol JM, Vidal M. 2001. Food web structure and elemental (C, N, and P) fluxes in the Eastern tropical North Atlantic. Deep-Sea Research II 48:22952–321

    Google Scholar 

  • Agustí S, Satta MP, Mura MP. 2004. Summer community respiration and pelagic metabolism in upper surface Antarctic waters. Aquat Microb Ecol 35:197–205

    Google Scholar 

  • Aitkenhead JA, McDowell WH. 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem. Cycles 14:1271–38

    Article  CAS  Google Scholar 

  • Arístegui J, Harrison WG. 2002. Decoupling of primary production and community respiration in the ocean: implications for regional carbon studies. Aquat Microb Ecol 29:1992–09

    Google Scholar 

  • Bauer JE, Druffel ERM. 1998. Ocean margins as a significant source of organic matter to the deep open ocean. Nature 392:4824–5

    Article  CAS  Google Scholar 

  • Bertilsson S, Tranvik LJ. 2000. Photochemical transformation of dissolved organic matter in lakes. Limnol Oceanogr 45:7537–62

    CAS  Google Scholar 

  • Caffrey JM. 2004. Factors controlling net ecosystem metabolism in U.S. Estuaries. Estuaries 27:901–101

    CAS  Google Scholar 

  • Caraco NF, Cole JJ. 2004. When terrestrial organic matter is sent down the river: Importance of allochthonous C inputs to the metabolism in lakes and rivers. In: Polis A, Power ME, Huxel GR (eds). Food webs at the landscape level. University of Chicago Press, pp 301–16

    Google Scholar 

  • Carignan R, Planas D, Vis C. 2000. Planktonic production and respiration in oligotrophic Shield lakes. Limnol Oceanogr 45:189–99

    Article  Google Scholar 

  • Chen C-C, Shiah F-K, Gong GC, Chiang K-P. 2003. Planktonic community respiration in the East China Sea: importance of microbial consumption of organic carbon. Deep-Sea Res. II 50:13111–25

    CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kilng GW, Kratz TK. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:15681–70

    CAS  PubMed  Google Scholar 

  • Cole JJ, Caraco NF. 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshwater Res 52:1011–10

    Article  CAS  Google Scholar 

  • Cole JJ, Pace ML, Carpenter SR, Kitchell JF. (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:17181–30

    Google Scholar 

  • Cole JJ. 1999. Aquatic microbiology for ecosystem scientists: new and recycled paradigms in ecological microbiology. Ecosystems 2:2152–25

    Google Scholar 

  • del Giorgio PA, Cole JJ, Cimbleris A. 1997. Respiration rates in bacteria exceed plankton production in unproductive aquatic systems. Nature 385:1481–51

    Google Scholar 

  • del Giorgio PA, Duarte CM. 2002. Respiration in the open ocean. Nature 420:3793–84

    PubMed  Google Scholar 

  • del Giorgio PA, Peters RH. 1994. Patterns in planktonic P:R ratios in lakes: Influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39:772–87

    Google Scholar 

  • del Giorgio PA, Williams PjleB. The global significance of respiration in aquatic ecosystems: from single cells to the biosphere. In: del Giorgio PA, Williams PJleB, Eds. Respiration in aquatic ecosystems, Oxford University Press. [in press-a]

  • del Giorgio PA, Williams PjleB. Respiration in aquatic ecosystems, Oxford University Press [in press-b]

  • Dillon PJ, Molot LA. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochem 36:29–42

    Article  CAS  Google Scholar 

  • Duarte CM, Agustí S, del Giorgio PA, Cole JJ. 1999. Regional carbon imbalances in the oceans. Science 284:1735b

    Google Scholar 

  • Duarte CM, Agustí S. 1998. The CO2 balance of unproductive aquatic ecosystems. Science 281:234–6

    Article  PubMed  CAS  Google Scholar 

  • Duarte CM, Arístegui J, González N, Agustí S, Anadón R. 2001. Evidence for a heterotrophic subtropical NE Atlantic. Limnol Oceanogr 46:4254–8

    Article  Google Scholar 

  • Duarte CM, Cebrián J. 1996. The fate of marine autotrophic production. Limnol Oceanogr 41:1758–66

    CAS  Google Scholar 

  • Duarte CM, Agustí S, Vaqué D. 2004. Controls on planktonic metabolism in the Bay of Blanes, north-western Mediterranean litoral. Limnol Oceanogr [in press]

  • Ducklow HW, McCallister SL. The biogeochemistry of carbon dioxide in the coastal oceans, In: Robinson AR, Brink K, Eds. The sea, vol 13, The global coastal ocean-multi-scale interdisciplinary processes. Harvard Univ. Press [in press]

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:2372–40

    Article  PubMed  CAS  Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate JM. 1998. Carbon dioxide emisión from European estuaries. Science 282:434–8

    Article  PubMed  CAS  Google Scholar 

  • Gattuso J-P, Franjignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst. 29:405–33

    Article  Google Scholar 

  • González N, Anadón R, Mouriño B, Fernández E, Sinha B, Escánez J, de Armas D. 2001. The metabolic balance of the planktonic community at the N. Atlantic Subtropiucal Gyre: the role of mesoscale instabilities. Limnol Oceanogr 46:946–52

    Article  Google Scholar 

  • Hansell DA, Ducklow HW, Macdonald AM, O’Neil Baringer M. 2004. Metabolic poise in the North Atlantic Ocean diagnosed from organic matter transports. Limnol Oceanogr 49:1084–94

    Article  CAS  Google Scholar 

  • Hanson PC, Bade DL, Carpenter SR, Kratz TK. 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:11121–9

    Article  CAS  Google Scholar 

  • Harrison WG, Arístegui J, Head EJH, Li WKW, Longhurst AR, Sameoto DD. 2001. Basin-scale variability in plankton biomass and community metabolism in the subtropical North Atlantic Ocean. Deep-Sea Res II 48:2241–69

    Article  Google Scholar 

  • Hemminga MA, Duartey CM. 2000. Seagrass ecology. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Hope D, Kratz TK, Riera JL. 1994. Relationship between pCO2 and dissolved organic carbon in northern Wisconsin lakes. J Environ Qual 25:14421–5

    Google Scholar 

  • Hopkinson CS Jr., Smith EM. Estuarine respiration: An overview of benthic, pelagic, and whole system respiration. In: del Giorgio PA, Williams PJleB, Eds. Respiration in aquatic ecosystem. Oxford Univ. Press, NY, USA. [in press]

  • Hoppe H-G, Gocke K, Koppe R, Begler C. 2002. Bacterial growth and primary production along a north-south transect in the Atlantic Ocean. Nature 416:168–71

    Article  PubMed  CAS  Google Scholar 

  • Houghton RA. 2003. Why are estimates of the terrestrial carbon balance so different?. Global Change Biol. 9:5005–9

    Article  Google Scholar 

  • IPCC. 2001 The carbon cycle and atmospheric carbon dioxide. In: IPCC, Climate Change 2001. Cambridge Univ. In Press, Cambridge, pp 183–237

  • Karl DM, Laws EA, Morris P, Williams PleBJ, Emerson S. 2003. Metabolic balance of the open sea. Nature 426:32

    Article  PubMed  CAS  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC. 1991. Arctic lakes and streams as gas conduits to the atmosphere – Implications for tundra carbon budgets. Science 251:298–301

    CAS  PubMed  Google Scholar 

  • Knauer GA. 1993. In: Wollast R Eds. Interactions of C, N, P, and S biogeochemical cycles and global change. Berlin: Springer-Verlag, p 211–31

  • Liu JK, Atkinson L, Chen CTA, Gao S, Hall J, Macdonald RW, Talaue-McManus L, Quiñones R. 2000. Exploring continental margin carbon fluxes on a global scale. EOS 81:641–4

    Google Scholar 

  • Liu J-K, Iseki K, Chao S-Y. 2002. Continental margin carbon fluxes. In: Hanson RB, Ducklow HW, Field JG (eds). The changing ocean carbon cycle. Cambridge Univ. Press, London, pp 186–239

    Google Scholar 

  • Lucea A, Duarte CM, Agustí S, Kennedy H. Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean). Biogeochemistry. [in press]

  • Ludwig W, Probst JL, Kempe S. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10:23–41

    Article  CAS  Google Scholar 

  • Mulholland PJ. 2003. Large-scale patterns in dissolved organic carbon concentration, flux, and sources, In: Stuart EG, Findlay G, Sinsabaugh RL (eds). Aquatic ecosystems: interactivity of dissolved organic matter. Elsevier Science, Amsterdam, p. 512

    Google Scholar 

  • Odum HT. 1956. Primary production in flowing waters. Limnol Oceanogr 1:112–7

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Hodgon JR. 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 423:240–3

    Google Scholar 

  • Pace ML, Prairie YT. Respiration in lakes. In: del Giorgio PA, Williams PJLeB, Eds. Respiration in aquatic systems Oxford University Press, NY, USA. [in press]

  • Prairie YT, Bird DF, Cole JJ. 2002. The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnol Oceanogr 47:316–21

    Google Scholar 

  • Raymond PA, Bauer JE, Cole JJ. 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the york river estuary. Limnol Oceanogr 45:1707–17

    CAS  Google Scholar 

  • Raymond PA, Cole JJ. 2003. Increase in the export of alkalinity from North America’s largest river. Science 301:88–91

    Article  PubMed  CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:6176–20

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Williams, PJleB. Respiration and its measurement in surface waters. In: del Giorgio PA, Williams PJleB, Eds. Respiration in aquatic ecosystem. Oxford Univ. Press, NY, USA. [in press]

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF. 2004. The oceanic sink for Anthropogenic CO2. Science 305:367–71

    Article  PubMed  CAS  Google Scholar 

  • Schelsinger WJ, Melack JM. 1981. Transport of organic carbon in the world’s rivers. Tellus 33:172–87

    Google Scholar 

  • Schlesinger WH. 1991. Biogeochemistry. An analysis of global change: Academic Press, New york

  • Scully NM, Cooper WJ, Tranvik LJ. 2003. Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. Fems Microb Ecol 46:353–7

    CAS  Google Scholar 

  • Serret P, Robinson C, Fernández E, Teira E, Tilstone G. 2001. Latitudinal variation of the balance between plankton photosynthesis and respiration in the eastern Atlantic Ocean. Limnol Oceanogr 46:1642–52

    Article  CAS  Google Scholar 

  • Smith S, MacKenzie F. 1987. The ocean as a heterotrophic system: implications for the global carbon cycle. Global Biogeochem Cycles 1, 187–98

    Article  CAS  Google Scholar 

  • Smith SV, Hollibaugh JT. 1993. Coastal metabolism and the oceanic organic carbon balance. Rev Geophysics 3:75–89

    Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olaffson J, Nojiri Y. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49:1601–22

    Article  CAS  Google Scholar 

  • Vanni MJ, DeAngelis DL, Schindler DE, Huxel GR. 2004. Overview: cross-habitat flux of nutrients and detritus. In: Polis A, Power ME, Huxel GR (eds). Food webs at the landscape level. University of Chicago Press, Chicago, USA, pp 3–11

    Google Scholar 

  • Watson AJ, Orr JC. 2003. Carbon dioxide fluxes in the global ocean. In: Fasham MJR, Ed. Ocean biogeochemistry, Berlin: Springer-Verlag, pp 123–43

    Google Scholar 

  • Webster JR, Meyer JL. 1999. Organic matter budgets for streams: a synthesis. J North Amer Benthol Soc 16:141–61

    Google Scholar 

  • Williams PJleB. 2000. Net production, gross production and respiration: what are the interconnections and what controls what? In: Hanson RB, Ducklow HW, Field JG (eds). The changing ocean carbon cycle. Cambridge Univ. Press, London, pp 37–60

    Google Scholar 

  • Williams PJLeB. 1998. The balance of plankton respiration and photosynthesis in the open ocean. Nature 394:55–7

    CAS  Google Scholar 

  • Williams PleBJ, Bower DG. 1999. Determination of organic carbon balance in the oceans from field observations - A re-evaluation. Science 284:1735a

    Article  Google Scholar 

Download references

Acknowledgements

This research is a contribution to projects EUROTROPH, funded by the European Commission (project EUROTROPH, ref. REN2001-4977-E), COCA (REN-2000-1471-C02), funded by the Spanish I+D program, and the “Integrating the aquatic with the terrestrial component of the global carbon budget” Working Group, supported by the National Center for Ecological Analysis and Synthesis, a Center supported by NSF (Grant #DEB-94-21535), the University of California at Santa Barbara, and the State of California. Y.P. and C.M.D. were also supported by sabbatical fellowships from the Spanish Ministry of Education and Science. We thank J.J. Cole and three anonymous reviewers for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, C.M., Prairie, Y.T. Prevalence of Heterotrophy and Atmospheric CO2 Emissions from Aquatic Ecosystems. Ecosystems 8, 862–870 (2005). https://doi.org/10.1007/s10021-005-0177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0177-4

Keywords

Navigation