Skip to main content

Advertisement

Log in

H3 G34-mutant high-grade glioma

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

H3F3A G34 (H3.3 G34)-mutant high-grade gliomas (HGG) are rare, and newly recognized infiltrating gliomas of the cerebral hemisphere. Here, we report the clinicopathological and molecular characteristics of four H3.3 G34-mutant gliomas in terms of its biological behavior compared to those of glioblastomas (GBMs) and H3 K27M-mutant diffuse midline gliomas (DMGs) of our hospital. The median age of the four patients with H3.3 G34 HGG was 44.5 years (14–66 years). Three patients had tumors in the cerebral hemisphere, whereas one patient had synchronous double tumors in the cerebral hemisphere and posterior fossa. All these tumors were high-grade glioma, but neither microvascular proliferation nor necrosis. They displayed uniform genetic and epigenetic signatures; ATRX-mutant, MGMT promoter-methylated, Olig2-negative, but IDH- and TERT promoter-wildtype. The median survival rate of H3.3 G34-mutant HGGs, IDH-was 23.5 months. In conclusion, H3.3 G34-mutant gliomas were unique HGGs with uniform genetic and epigenetic abnormalities, which suggested a single phylogenic origin. The median survival of H3.3 G34-mutant HGGs was better than those of IDH-wildtype GBMs and H3 K27M-mutant DMGs, but worse than that of IDH-mutant GBM. The tumor-infiltrating area and resectability may be the crucial parameters for the prognosis of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATRX:

Alpha Thalassemia/Mental Retardation Syndrome X

BWA:

Burrows–Wheeler aligner

CCRT:

Chemotherapy and radiation treatment

CDKN2A:

Cyclin dependent kinase inhibitor 2A

CNV:

Copy number variants

DAXX:

Death domain associated protein

EGFR:

Epidermal growth factor receptor

GATK:

Genome analysis toolkit

BAM:

Binary alignment MAP

GBM:

Glioblastoma

GTR:

Gross total resection

HGG:

High-grade glioma

H3.3:

H3F3A

IDH:

Isocitrate dehydrogenase

KMT:

Lysine methyltransferase

MGMT:

O-6-Methylguanine-DNA methyltransferase

Olig2:

Oligodendrocyte transcription factor 2

pHH3:

Phosphohistone-H3

PNET:

Primitive neuroendocrine tumors

PDGFR:

Platelet derived growth factor receptor alpha

SAM:

Sequence alignment map

SETD2:

SET domain containing 2

SNV:

Single nucleotide variants

TERT:

Telomere reverse transcriptase

WHO:

World Health Organization

References

  1. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H et al (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45:1479–1482

    Article  CAS  PubMed  Google Scholar 

  2. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S, Bax DA, Carvalho D, Taylor KR, Vinci M et al (2013) Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3:512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fang J, Huang Y, Mao G, Yang S, Rennert G, Gu L, Li H, Li GM (2018) Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3–MutSalpha interaction. Proc Natl Acad Sci USA 115:9598–9603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T (2013) H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 139:345–349

    Article  CAS  PubMed  Google Scholar 

  6. Haque F, Varlet P, Puntonet J, Storer L, Bountali A, Rahman R, Grill J, Carcaboso AM, Jones C, Layfield R et al (2017) Evaluation of a novel antibody to define histone 3.3 G34R mutant brain tumours. Acta Neuropathol Commun 5:45

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones C, Perryman L, Hargrave D (2012) Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 9:400–413

    Article  CAS  PubMed  Google Scholar 

  8. Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V, Sturm D, Meyer J, Jones C, Zheludkova O et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131:137–146

    Article  CAS  PubMed  Google Scholar 

  9. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107:14075–14080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF (2019) Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. Cancers (Basel) 11(5):660. https://doi.org/10.3390/cancers11050660

    Article  CAS  Google Scholar 

  11. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Myung JK, Byeon SJ, Kim B, Suh J, Kim SK, Park CK, Chung CK, Chang KH, Park SH (2011) Papillary glioneuronal tumors: a review of clinicopathologic and molecular genetic studies. Am J Surg Pathol 35:1794–1805. https://doi.org/10.1097/PAS.0b013e31823456e6

    Article  PubMed  Google Scholar 

  13. Northcott PA, Pfister SM, Jones DT (2015) Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncol 16:e293–302

    Article  PubMed  Google Scholar 

  14. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–i339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reuss DE, Sahm F, Schrimpf D, Wiestler B, Capper D, Koelsche C, Schweizer L, Korshunov A, Jones DT, Hovestadt V et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated" diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129:133–146

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki S, Tomomasa R, Nobusawa S, Hirato J, Uchiyama T, Boku E, Miyasaka T, Hirose T, Ohbayashi C (2019) Anaplastic pleomorphic xanthoastrocytoma associated with an H3G34 mutation: a case report with review of literature. Brain Tumor Pathol 36:169–173

    Article  CAS  PubMed  Google Scholar 

  17. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  18. Shi L, Shi J, Shi X, Li W, Wen H (2018) Histone H3.3 G34 mutations alter histone H3K36 and H3K27 methylation in cis. J Mol Biol 430:1562–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF et al (2014) Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 14:92–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  21. Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12:e1004873

    Article  PubMed  PubMed Central  Google Scholar 

  22. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform 43:111011–111033

    Article  Google Scholar 

  23. Vettermann FJ, Felsberg J, Reifenberger G, Hasselblatt M, Forbrig R, Berding G, la Fougere C, Galldiks N, Schittenhelm J, Weis J et al (2018) Characterization of diffuse gliomas with histone H3–G34 mutation by MRI and dynamic 18F-FET PET. Clin Nucl Med 43:895–898

    Article  PubMed  Google Scholar 

  24. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, Zhu X, Qu C, Chen X, Zhang J et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshimoto K, Hatae R, Sangatsuda Y, Suzuki SO, Hata N, Akagi Y, Kuga D, Hideki M, Yamashita K, Togao O et al (2017) Prevalence and clinicopathological features of H3.3 G34-mutant high-grade gliomas: a retrospective study of 411 consecutive glioma cases in a single institution. Brain Tumor Pathol 34:103–112

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number HI14C1277).

Author information

Authors and Affiliations

Authors

Contributions

KYL and S-HP wrote the manuscript. C-KP and S-KK operated, treated the patients and reviewed the clinical data. SHC collected and described the radiological data, TMK treated and described the clinical findings of the patients. KYL and S-HP reviewed the clinicopathological features of the patients. JKW and HY analyzed NGS data and S-HP designed, supervised and edited this clinicopathological research.

Corresponding author

Correspondence to Sung-Hye Park.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical standards

The institutional review board of our hospital approved this study (IRB No: 1906-020-1037) and this study and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. For survival comparison, we obtained the survival data of 52 cases of IDH-mutant GBM, 56 cases of IDH-wildtype GBM, and 13 cases of adult H3 K27M-mutant DMGs, who had been treated at SNUH during 2011 to 2017 (IRB No: 1404-056-572).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RTF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, K.Y., Won, J.K., Park, CK. et al. H3 G34-mutant high-grade glioma. Brain Tumor Pathol 38, 4–13 (2021). https://doi.org/10.1007/s10014-020-00378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-020-00378-8

Keywords

Navigation