Skip to main content
Log in

Periodic voltammetry as a successful technique for synthesizing CdSe semiconductor films for photo-electrochemical application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polycrystalline n-type CdSe thin films were deposited from aqueous bath at room temperature by periodic voltammetry for use in photo-electrochemical (PEC) solar cells. The influence of periodic scans on the functional properties of the chalcogenide films was thoroughly investigated through electron microscopy (SEM), X-ray diffraction (XRD), UV–visible spectrometry, and electrochemical techniques. The film thickness increases with the number of periodic scans, and the spectral measurements identify the optical band gap in the range 1.55–1.72 eV. The CdSe films show typical X-ray diffraction patterns of hexagonal crystal structure with particle size 20–30 nm, uniformly distributed throughout the matrix. PEC characteristics including photo-current density, conversion efficiency (η), fill factor (FF), and durability of the films were evaluated by the help of respective electrochemical techniques. The voltammetric cycle number was optimized which enable to identify the best CdSe film exhibiting photo-conversion efficiency of ~1% with minimum photocurrent decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Califano M, Zunger A, Franceschetti A (2004) Direct carrier multiplication due to inverse auger scattering in CdSe quantum dots. Appl Phys Lett 84:2409–2411

    Article  CAS  Google Scholar 

  2. Malashchonak МV, Streltsov EA, Mazanik V, Kulak AI, Dergacheva MB, Urazov KA, Pilko VV (2017) Size-dependent photocurrent switching in chemical bath deposited CdSe quantum dot films. J Solid State Electrochem 21:905–913

    Article  CAS  Google Scholar 

  3. Osial M, Widera J, Jackowska K (2013) Influence of electrodeposition conditions on the properties of CdTe films. J Solid State Electrochem 17:2477–2486

    Article  CAS  Google Scholar 

  4. Bao Z, Yang X, Li B, Luo R, Liu B, Tang P, Zhang J, Wu L, Li W, Feng L (2016) The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell. J Mater Sci Mater Electron 27:7233–7239

    Article  CAS  Google Scholar 

  5. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791

    Article  CAS  Google Scholar 

  6. Vorobiev Y, González-Hernández J, Vorobiev P, Bulat L (2006) Thermal-photovoltaic solar hybrid system for efficient solar energy conversion. Sol Energy 80:170–176

    Article  Google Scholar 

  7. Shyju TS, Anandhi S, Indirajith R, Gopalakrishnan R (2011) Solvothermal synthesis, deposition and characterization of cadmium selenide (CdSe) thin films by thermal evaporation technique. J Cryst Growth 337:38–45

    Article  CAS  Google Scholar 

  8. Xie Y, Wang L, Liu P, Xia Y, Huang W, Li Z (2017) Fabrication of strawberry-like nano-CdSe thin films for photoelectrochemistry by selenizing cd(OH)2 deposits obtained from the anodization of cd. J Solid State Electrochem 21:477–483

    Article  CAS  Google Scholar 

  9. Kung S, Xing W, VanderVeer WE, Yang F, Donavan KC, Cheng M, Hemminger JC, Penner RM (2011) Tunable photoconduction sensitivity and bandwidth for lithographically patterned Nanocrystalline cadmium selenide nanowires. ACS Nano 5:7627–7639

    Article  CAS  Google Scholar 

  10. Haremza JM, Hahn MA, Krauss TD (2002) Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2:1253–1258

    Article  CAS  Google Scholar 

  11. Leschkies KS, Divakar R, Basu J, Enache-Pommer E, Boercker JE, Carter CB, Kortshagen UR, Norris DJ, Aydil ES (2007) Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett 7:1793–1798

    Article  CAS  Google Scholar 

  12. Gudage YG, Sharma R (2010) Growth kinetics and photoelectrochemical (PEC) performance of cadmium selenide thin films: pH and substrate effect. Curr Appl Phys 10:1062–1070

    Article  Google Scholar 

  13. Yadav AA, Barote MA, Masumdar EU (2010) Studies on cadmium selenide (CdSe) thin films deposited by spray pyrolysis. Mater Chem Phys 121:53–57

    Article  CAS  Google Scholar 

  14. Hernandez-Perez MA, Aguilar-Hernandez J, Contreras-Puente G, Vargas-Garcia JR, Rangel-Salinas E (2008) Comparative optical and structural studies of CdSe films grown by chemical bath deposition and pulsed laser deposition. Phys E 40:2535–2539

    Article  CAS  Google Scholar 

  15. Gholami Hatam E, Ghobadi N (2016) Effect of deposition temperature on structural, optical properties and configuration of CdSe nanocrystalline thin films deposited by chemical bath deposition. Mater Sci Semicond Process 43:177–181

    Article  CAS  Google Scholar 

  16. Bagade CS, Ghanwat VB, Khot KV, Bhosale PN (2016) Efficient improvement of photoelectrochemical performance of CdSe thin film deposited via arrested precipitation technique. Mater Lett 164:52–55

    Article  CAS  Google Scholar 

  17. Yadav AA, Barote MA, Masumdar EU (2010) Photoelectrochemical properties of spray deposited n-CdSe thin films. Sol Energy 84:763–770

    Article  CAS  Google Scholar 

  18. Hankare PP, Chate PA, Sathe DJ, Asabe MR, Jadhav BV (2009) Photoelectrochemical studies of CdSe thin films deposited by dip method. J Alloys Compd 474:347–350

    Article  CAS  Google Scholar 

  19. Datta J, Bhattacharya C, Bandyopadhyay S (2006) Cathodic deposition of CdSe films from dimethyl formamide solution at optimized temperature. Appl Surf Sci 253:2289–2295

    Article  CAS  Google Scholar 

  20. Hazra P, Jana A, Hazra M, Datta J (2014) Studies on the photo-electrochemical behaviour of Bi2S3NPs embedded in a PANINFs matrix. RSC Adv 4:33662–33671

    Article  CAS  Google Scholar 

  21. AUTOLAB (1999) Instructional manual. EcoChemie B.V, The Netherlands

    Google Scholar 

  22. Memming R (2001) Semiconductor electrochemistry. Willy-Vch, Verlag gmbH, Germany

    Google Scholar 

  23. Jana A, Hazra P, Hazra M, Datta J (2016) Sequential electro-deposition of Bi2S3/CdS films as co-sensitizer photoanodes for liquid junction solar cell. Mate Chem Phys 183:173–180

    Article  CAS  Google Scholar 

  24. Datta J, Jana A, Bhattacharya C, Bandyopadhyay S (2009) Controlled growth of CdTe films by periodic voltammetry for solar cell applications. Electrochim Acta 54:5470–5478

    Article  CAS  Google Scholar 

  25. Dewald JF (1959) in: Hannay NB (ed) Semiconductors, Reinfold, New York

  26. Jana A, Bhattacharya C, Datta J (2010) Enhanced photoelectrochemical activity of electro-synthesized CdS–Bi2S3 composite films grown with self-designed cross-linked structure. Electrochim Acta 55:6553–6562

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR (2006) Electrochemical methods. Wiley India (P) Ltd, New Delhi

    Google Scholar 

  28. Mongal BN, Bhattacharya S, Sengupta S, Mandal TK, Datta J, Naskar S (2016) A novel ruthenium sensitizer with –OMe substituted phenyl-terpyridine ligand for dye sensitized solar cells. Sol Energy 134:107–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from DST-Nanomission, New Delhi, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayati Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, A., Hazra, M. & Datta, J. Periodic voltammetry as a successful technique for synthesizing CdSe semiconductor films for photo-electrochemical application. J Solid State Electrochem 21, 3083–3091 (2017). https://doi.org/10.1007/s10008-017-3656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3656-6

Keywords

Navigation