Skip to main content
Log in

Enhancement of proton mobility and mitigation of methanol crossover in sPEEK fuel cells by an organically modified titania nanofiller

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An organically functionalized titania, TiO2-RSO3H, was evaluated as filler in sulfonated polyetheretherketone (sPEEK)-based composite membranes for application in high temperature direct methanol fuel cells. The presence of propylsulfonic acid groups covalently bound onto the TiO2 surface and the nanometric nature of the additive were analyzed by Raman spectroscopy and transmission electron microscopy, respectively. The properties of the sPEEK/TiO2-RSO3H composite membranes were compared with those of the pure sPEEK membranes and those of the sPEEK/TiO2 composite membranes containing pristine titania nanoparticles at same filler content. Water and methanol transport properties were investigated by NMR methods, including relaxation times and self-diffusion coefficients as function of temperature (up to 130 °C), and pressure (from 0 up to 2 kbar). The incorporation of the nanoadditivies in the sPEEK polymer demonstrates considerable effects on the morphology and stiffness of the membranes, as well as on the transport properties and barrier effect to the methanol crossover. In particular, the functionalization by propylsulfonic acid groups promotes a higher reticulation between the polymeric chains, increasing the tortuosity of the methanol diffusional paths, so reducing the molecular diffusion, while the proton mobility increases being favored by the Grotthus-type mechanism. Conductivity measurements point out that the filler surface functionalization avoids the reduction of the overall proton conduction of the electrolyte due to the embedding of the low-conducting TiO2. Finally, remarkable improvements were found when using the sPEEK/TiO2-RSO3H composite membrane as electrolyte in a DMFC, in terms of reduced methanol crossover and higher current and power density delivered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31

    Article  CAS  Google Scholar 

  2. Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161

    Article  Google Scholar 

  3. Han J, Liu H (2007) Real time measurements of methanol crossover in a DMFC. J Power Sources 164:166–173

    Article  CAS  Google Scholar 

  4. Kim JH, Kim SK, Nam K, Kim DW (2012) Composite proton conducting membranes based on nafion and sulfonated SiO2 nanoparticles. J Membr Sci 415-416:696–701

    Article  CAS  Google Scholar 

  5. Kim Y, Choi Y, Kim HK, Lee JS (2010) New sulfonic acid moiety grafted on montmorillonite as filler of organic–inorganic composite membrane for non-humidified proton-exchange membrane fuel cells. J Power Sources 195:4653–4659

    Article  CAS  Google Scholar 

  6. Nicotera I, Simari C, Coppola L, Zygouri P, Gournis D, Brutti S, Minuto FD, Aricò AS, Sebastian D, Baglio V (2014) Sulfonated graphene oxide platelets in Nafion nanocomposite membrane: advantages for application in direct methanol fuel cells. J Phys Chem C 118:24357–24368

    Article  CAS  Google Scholar 

  7. Nicotera I, Kosma V, Simari C, D’Urso C, Aricò AS, Baglio V (2014) Methanol and proton transport in layered double hydroxide and smectite clay-based composites: influence on the electrochemical behavior of direct methanol fuel cells at intermediate temperatures. J Solid State Electrochem. doi:10.1007/s10008-014-2701-y

    Google Scholar 

  8. Cozzi D, de Bonis C, D’Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/nafion composite proton exchange membranes for fuel cells applications. J Power Sources 248:1127–1132

    Article  CAS  Google Scholar 

  9. de Bonis C, Cozzi D, Mecheri B, D’Epifanio A, Rainer A, De Porcellinis D, Licoccia S (2014) Effect of filler surface functionalization on the performance of Nafion/titanium oxide composite membranes. Electrochim Acta 147:418–425

    Article  Google Scholar 

  10. Awang N, Ismail AF, Jaafar J, Matsuura T, Junoh H, Othman MHD, Rahman MA (2015) Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. React Funct Polym 86:248–258

    Article  CAS  Google Scholar 

  11. Mishra AK, Bose S, Kuila T, Kim NH, Lee JH (2012) Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog Polym Sci 37:842–869

    Article  CAS  Google Scholar 

  12. Villa DC, Angioni S, Quartarone E, Righetti PP, Mustarelli P (2013) New sulfonated PBIs for PEMFC application. Fuel Cells 13:98–103

    Article  CAS  Google Scholar 

  13. Roy A, Hickner MA, Einsla BR, Harrison WL, McGrath JE (2009) Synthesis and characterization of partially disulfonated hydroquinone-based poly(arylene ether sulfone)s random copolymers for application as proton exchange membranes. J Polym Sci Part A: Polym Chem 47:384–391

    Article  CAS  Google Scholar 

  14. de Bonis C, D’Epifanio A, Di Vona ML, D’Ottavi C, Mecheri B, Traversa E, Trombetta M, Licoccia S (2009) Proton conducting hybrid membranes based on aromatic polymers blends for direct methanol fuel cell applications. Fuel Cells 9:387–393

    Article  Google Scholar 

  15. Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005

    Article  CAS  Google Scholar 

  16. de Bonis C, D’Epifanio A, Di Vona ML, Mecheri B, Traversa E, Trombetta M, Licoccia S (2010) Proton-conducting electrolytes based on silylated and sulfonated polyetheretherketone: synthesis and characterization. J Polym Sci Part A: Polym Chem 48:178–2186

    Article  Google Scholar 

  17. Mollà S, Compañ V (2014) Polymer blends of SPEEK for DMFC application at intermediate temperatures. Int J Hydrog Energy 39:5121–5136

    Article  Google Scholar 

  18. de Bonis C, D’Epifanio A, Mecheri B, Traversa E, Miyayama M, Tavares AC, Licoccia S (2012) Layered tetratitanate intercalating sulfanilic acid for organic/inorganic proton conductors. Solid State Ionics 227:73–79

    Article  Google Scholar 

  19. Jones DJ, Rozière J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. Adv Polym Sci 215:219–264

    CAS  Google Scholar 

  20. Alvarez A, Guzmán C, Carbone A, Saccà A, Gatto I, Passalacqua E, Nava R, Ornelas R, Ledesma-García J, Arriaga LG (2011) Influence of silica morphology in composite Nafion membranes properties. Int J Hydrog Energy 36:14725–14733

    Article  CAS  Google Scholar 

  21. Fontanella JJ, Edmonson CD, Wintersgill MC, Wu Y, Greenbaum SG (1996) High-pressure electrical conductivity and NMR Studies in variable equivalent weight NAFION membranes. Macromolecules 29:4944–4951

    Article  CAS  Google Scholar 

  22. Fontanella JJ, Wintersgill MC, Chen RS, Wu Y, Greenbaum SG (1995) Charge transport and water molecular motion in variable molecular weight nafion membranes: high pressure electrical conductivity and NMR. Electrochim Acta 40:2321–2326

    Article  CAS  Google Scholar 

  23. Jayakody JRP, Stallworth PE, Mananga ES, Zapata JF, Greenbaum SG (2004) High pressure NMR study of water self-diffusion in NAFION-117 membrane. J Phys Chem B 108:4260–4262

    Article  CAS  Google Scholar 

  24. Nicotera I, Khalfan A, Goenaga G, Zhang T, Bocarsly A, Greenbaum S (2008) NMR investigation of water and methanol mobility in nanocomposite fuel cell membranes. Ionics 14:243–253

    Article  CAS  Google Scholar 

  25. Licoccia S, Traversa E (2006) Increasing the operation temperature of polymer electrolyte membranes for fuel cells: from nanocomposites to hybrids. J Power Sources 159:12–20

    Article  CAS  Google Scholar 

  26. He Q, Kusoglu A, Lucas IT, Clark K, Weber AZ, Kostecki R (2011) Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes. J Phys Chem B 115:11650–11657

    Article  CAS  Google Scholar 

  27. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. J Biophoton Int 11:36–42

    Google Scholar 

  28. Rasband WS (1997-2014) In: ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014

  29. Tanner JE (1970) Use of the stimulated echo in NMR diffusion studies. J Chem Phys 52:2523–2526

    Article  CAS  Google Scholar 

  30. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent Field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  31. Giarola M, Sanson A, Monti F, Mariotto G, Bettinelli M, Speghini A, Salviulo G (2010) Vibrational dynamics of anatase TiO2: polarized Raman spectroscopy and ab initio calculations. Phys Rev B 81:1743051–1743058

    Article  Google Scholar 

  32. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, J. Wiley & Sons, New York

    Google Scholar 

  33. Silverstein R, Bassler G, Morrill TC (1991) Spectrometric identification of organic compounds, J. Wiley & Sons, Toronto

    Google Scholar 

  34. Kim Y, Hickner MA, Dong L, Pivovar BS, McGrath JE (2004) Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability. J Membr Sci 243:317–326

    Article  CAS  Google Scholar 

  35. Ling X, Jia C, Liu J, Yan C (2012) Preparation and characterization of sulfonated poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membrane for vanadium redox flow battery. J Membr Sci 415-416:306–312

    Article  CAS  Google Scholar 

  36. Xiao CY, Sun GM, Yan DY, Zhu PF, Tao P (2002) Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization. Polymer 43:5335–5339

    Article  CAS  Google Scholar 

  37. Li X, Zhao C, Lu H, Wang Z, Na H (2005) Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application. Polymer 46:5820–5827

    Article  CAS  Google Scholar 

  38. Goalawit R, Chirachanchai S, Shishatckiy S, Nunes SP (2008) Sulfonated montmorillonite/sulfonated poly (ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346

    Article  Google Scholar 

  39. Zhang Y, Shao K, Zhao C, Zhan G, Li H, Fu T, Na H (2009) Novel sulfonated poly (ether ether ketone) with pendant benzimidazole groups as a proton exchange membrane for direct methanol fuel cells. J Power Sources 194:175–181

    Article  CAS  Google Scholar 

  40. Brutti S, Scipioni R, Navarra MA, Panero S, Allodi V, Giarola M, Mariotto G (2014) SnO2-nafion® nanocomposite polymer electrolytes for fuel cell applications. Int J Nanotechnol 11:882–896

    Article  CAS  Google Scholar 

  41. Nicotera I, Zhang T, Bocarsly A, Greenbaum S (2007) NMR characterization of composite polymer membranes for low-humidity PEM fuel cells. J Electrochem Soc 154:B466–B473

    Article  CAS  Google Scholar 

  42. Nicotera I, Enotiadis A, Angjeli K, Coppola L, Ranieri GA, Gournis D (2011) Effective improvement of Water-retention in nanocomposite membranes using novel organo-modified clays as fillers for high temperature PEMFCs. J Phys Chem B 115:9087–9097

    Article  CAS  Google Scholar 

  43. Enotiadis A, Angjeli K, Baldino N, Nicotera I, Gournis D (2012) Graphene-based nafion nanocomposite membranes: enhanced proton transport and water retention by novel organo-functionalized graphene oxide nanosheets. Small 8:3338–3349

    Article  CAS  Google Scholar 

  44. Slichter C (1990) Principles of magnetic resonance, springer series in solid state science, 3rd edn. York, New

    Google Scholar 

  45. Nicotera I, Angjeli K, Coppola L, Aricò AS, Baglio V (2012) NMR and electrochemical investigation of the transport properties of methanol and water in Nafion and clay-nanocomposites membranes for DMFCs. Membranes 2:325–345

    Article  CAS  Google Scholar 

  46. Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci 44:777–779

    Article  CAS  Google Scholar 

  47. Pasquini AL, Ziarelli F, Viel S, Di Vona ML, Knauth P (2015) Fluoride ion-conducting polymers : ionic conductivity and fluoride ion diffusion coefficient in quaternized polysulfones. ChemPhysChem. doi:10.1002/cphc.201500643

    Google Scholar 

  48. Quartarone E, Mustarelli P, Magistris A (2002) Transport properties of porous PVDF membranes J. Phys Chem B 106:10828–10833

    Article  CAS  Google Scholar 

  49. Pandey RP, Shahi VK (2013) Aliphatic-aromatic sulphonated polyimide and acid functionalized polysilsesquioxane composite membranes for fuel cell applications. J Mater Chem A 1:14375–14383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the financial support of the Italian Ministry of Education, Universities and Research (Project: PRIN 2011, NAMED-PEM). The NMR measurements at Hunter College were supported by a grant from the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Nicotera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bonis, C., Simari, C., Kosma, V. et al. Enhancement of proton mobility and mitigation of methanol crossover in sPEEK fuel cells by an organically modified titania nanofiller. J Solid State Electrochem 20, 1585–1598 (2016). https://doi.org/10.1007/s10008-016-3167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3167-x

Keywords

Navigation