Skip to main content
Log in

Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li1 − x K x FePO4/C (x = 0, 0.03, 0.05, and 0.07) composites were synthesized at 700 °C in an argon atmosphere by carbon thermal reduction method. Based on X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analysis, the composite was ultrafine sphere-like particles with 100–300 nm size, and the lattice structure of LiFePO4 was not destroyed by K doping, while the lattice volume was enlarged. The electrochemical properties were investigated by four-point probe conductivity measurements, galvanostatic charge and discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the capacity performance at high rate and cyclic stability were improved by doping an appropriate amount of K, which might be ascribed to the fact that the doped K ion expands Li ion diffusion pathway. Among the doped materials, the Li0.97K0.03FePO4/C samples exhibited the best electrochemical activity, with the initial discharge capacity of 153.7 mAh g−1 at 0.1 C and the capacity retention rate of about 92% after 50 cycles at above 1 C, 11% higher than undoped sample. Remarkably, it still showed good cycle retention at a high current rate of 10 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) J Electrochem Soc 151:A1352–A1356

    Article  CAS  Google Scholar 

  3. Striebel K, Shim J, Srinivasan V, Newman J (2005) J Electrochem Soc 152:A664–A670

    Article  CAS  Google Scholar 

  4. Anderson AS, Thomas JO (2001) J Power Sources 97–98:498–502

    Article  Google Scholar 

  5. Chung SY, Chiang YM (2003) Eletrochem Solid State Lett 6:A278–A281

    Article  CAS  Google Scholar 

  6. Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) Nat Mater 4:254–260

    Article  CAS  Google Scholar 

  7. Sides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) Electrochem Solid State Lett 8:A484–A487

    Article  CAS  Google Scholar 

  8. Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kang KT, Kim HG (2004) Solid State Commun 129:311–314

    Article  CAS  Google Scholar 

  9. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Electrochem Solid State Lett 9:A352–A355

    Article  CAS  Google Scholar 

  10. Choi D, Kumta PN (2007) J Power Sources 163:1064–1069

    Article  CAS  Google Scholar 

  11. Chung SY, Blocking JT, Chiang YM (2002) Nat Mater 2:123–128

    Article  Google Scholar 

  12. Hong J, Wang CS, Kasavajjula U (2006) J Power Sources 162:1289–1296

    Article  CAS  Google Scholar 

  13. Wang DY, Li H, Shi SQ, Huang XJ, Chen LQ (2005) Electrochim Acta 50:2955–2958

    Article  CAS  Google Scholar 

  14. Yin XG, Huang KL, Liu SQ, Wang HY, Wang H (2010) J Power Sources 195:4308–4312

    Article  CAS  Google Scholar 

  15. Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ (2006) Electrochem Commun 8:1553–1557

    Article  CAS  Google Scholar 

  16. Ouyang CY, Wang DY, Shi SQ, Wang ZX, Li H, Huang XJ, Chen LQ (2006) Chin Phys Lett 23:61–64

    Article  CAS  Google Scholar 

  17. Sun LQ, Cui RH, Jalbout AF, Li MJ, Pan XM, Wang RS, Xie HM (2009) J Power Sources 189:522–526

    Article  CAS  Google Scholar 

  18. Yao J, Konstantinov K, Wang GX, Liu HK (2007) J Solid State Electrochem 11:177–185

    Article  CAS  Google Scholar 

  19. Kawakita J, Makino K, Katayama Y, Miura T, Kishi T (1998) J Power Sources 75:244–250

    Article  CAS  Google Scholar 

  20. Wu YP, Rahm E, Holze R (2002) Electrochim Acta 47:3491–3507

    Article  CAS  Google Scholar 

  21. Chen H, Yu WZ, Han SC, Xu ZY (2007) J Trans Nonferrous Met Soc China 17:951–957

    Article  CAS  Google Scholar 

  22. Wang BF, Qiu YL, Ni SY (2007) Solid State Ionics 178:843–847

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LRM (2001) Electrochemical methods, 2nd edn. Wiley, New York, p 231

    Google Scholar 

  24. Wang YR, Yang YF, Hu X, Yang YB, Shao HX (2009) J Alloys Compd 481:590–594

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by Central South University Postdoctoral Foundation (No. 09hn1693).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, X., Li, J., Huang, K. et al. Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries. J Solid State Electrochem 16, 767–773 (2012). https://doi.org/10.1007/s10008-011-1426-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1426-4

Keywords

Navigation