Skip to main content
Log in

Does the copolymer poly(vinylidene cyanide–tricyanoethylene) possess piezoelectricity?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometry, energy, internal rotation barrier, dipole moment, and molecular polarizability of the α- and β-chain models of poly(vinylidene cyanide–tricyanoethylene) [P(VDCN-TrCN)] were studied with density functional theory at the B3PW91/6-31G(d) level. The effects of the chain length and the TrCN content on the copolymer chain stability, the chain conformation, and the electrical properties of P(VDCN-TrCN) were examined and compared with those of poly(vinylidene fluoride–trifluoroethylene) and PVDCN to gauge whether P(VDCN-TrCN) would be expected to possess substantial piezoelectricity. The results of this study showed that the stability of the β conformation increases and the energy difference per monomer unit between the β- and α-chains decreases with increasing TrCN. However, introducing TrCN into VDCN will not significantly enhance the radius of curvature of the P(VDCN-TrCN) chains. The average dipole moment per monomer unit in the β-chain is affected by the chain curvature and the TrCN content. The amount of piezoelectricity present in P(VDCN-TrCN) is slightly smaller than that in PVDCN, and is less than that in poly(vinylidene fluoride–trifluoroethylene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furukawa T (1989) IEEE Trans Electr Insul 24:375–394

    Article  CAS  Google Scholar 

  2. Lovinger AJ (1983) Science 220:1115–1121

    Article  CAS  Google Scholar 

  3. Kepler RG, Anderson RA (1992) Adv Phys 41:1–57

    Article  CAS  Google Scholar 

  4. Eberle G, Schmidt H, Eisenmenger W (1996) IEEE Trans Dielectr Electr Insul 3:624–646

    Article  CAS  Google Scholar 

  5. Samara GA (2001) Solid State Phys 56:239–458

    Article  CAS  Google Scholar 

  6. Kawai H (1969) Jpn J Appl Phys 8:975–976

    Article  CAS  Google Scholar 

  7. Bergman JG Jr, McFee JH, Crane GR (1971) Appl Phys Lett 18:203–205

    Article  CAS  Google Scholar 

  8. Anderson RA, Kepler RG, Lagasse RR (1981) Ferroelectrics 33:91–94

    Article  CAS  Google Scholar 

  9. Furukawa T, Date M, Fukada E (1980) J Appl Phys 51:1135–1141

    Article  CAS  Google Scholar 

  10. Lando JB, Doll WW (1968) J Macromol Sci Phys 2:205–218

    Article  CAS  Google Scholar 

  11. Farmer BL, Hopfinger AJ, Lando JB (1972) J Appl Phys 43:4293–4303

    Article  CAS  Google Scholar 

  12. Yagi T, Tatemoto M, Sako JI (1980) Polym J 12:209–223

    Article  CAS  Google Scholar 

  13. Qu H, Garcia T, Yao W, Zhang J, Ducharme S, Dowben PA, Sorokin AV, Fridkin VM (2003) Appl Phys Lett 82:4322–4324

    Article  CAS  Google Scholar 

  14. Fukuma T, Kobayashi K, Horiuchi T, Yamada H, Matsushige K (2000) Jpn J Appl Phys Pt 1 39:3830–3833

    Google Scholar 

  15. Blinov LM, Fridkin VM, Palto SP, Bune AV, Dowben PA, Ducharme S (2000) Phys Usp 43:243–257

    Article  CAS  Google Scholar 

  16. Davis GT (1988) In: Wang TT, Herbert JM, Glass AM (eds) Chapter 9. In: The applications of ferroelectric polymers. Bell and Bain, Glasgow, p 37

  17. Ducharme S, Palto SP, Fridkin VM, Blinov LM (eds) (2000) Chapter 11. In: Handbook of surfaces and interfaces of materials, vol 3. Academic, San Diego, pp 546–592

  18. Wang ZY, Su KH, Fan HQ, Wen ZY (2007) Polymer 48:7145–7155

    Article  CAS  Google Scholar 

  19. Higashihata Y, Sako J, Yagi T (1981) Ferroelectrics 32:85–92

    Article  CAS  Google Scholar 

  20. Nakhmanson SM, Buongiorno Nardelli M, Bernholc J (2005) Phys Rev B 72:115210

    Article  Google Scholar 

  21. Abe Y, Tashiro K, Kobayashi M (2000) Comput Theor Polym Sci 10:323–333

    Article  CAS  Google Scholar 

  22. Hattori T, Watanabe T, Akama S, Hikosaka M, Ohigashi H (1997) Polymer 38:3505–3511

    Article  CAS  Google Scholar 

  23. Hicks JC, Jones TE, Logan JC (1978) J Appl Phys 49:6092–6096

    Article  CAS  Google Scholar 

  24. Lovinger AJ (1983) Macromolecules 16:1529–1534

    Article  CAS  Google Scholar 

  25. Wang ZY, Fan HQ, Su KH, Wen ZY (2006) Polymer 47:7988–7996

    Article  CAS  Google Scholar 

  26. Wang ZY, Fan HQ, Su KH, Wang X, Wen ZY (2007) Polymer 48:3226–3236

    Article  CAS  Google Scholar 

  27. Lee JW, Ttakase Y, Newman BA, Scheinbeim JI (1991) J Polym Sci Polym Phys 29:273–277

    Article  CAS  Google Scholar 

  28. Lee JW, Ttakase Y, Newman BA, Scheinbeim JI (1991) J Polym Sci Polym Phys 29:279–286

    Article  CAS  Google Scholar 

  29. Stupp SI, Carr SH (1979) Colloid Polym Sci 257:913–919

    Article  CAS  Google Scholar 

  30. Su J, Harrison JS, Clair TS (2000) ISAF 2000: Proc 2000 12th IEEE Int Symp on Appl Ferroelectrics, Honolulu, HI, USA, 21 July–2 Aug 2000, 2:811–814

  31. Zheyi M, Scheinbiem JI, Lee JW, Newman BA (1994) J Polym Sci B Polym Phys 32:2721–2731

    Article  Google Scholar 

  32. Furukawa T, Goho T, Date M, Takamatsu T, Fukada E (1979) Kobunshi Ronbunshu 36:685–688

    Article  CAS  Google Scholar 

  33. Pfister G, Abkowitz M, Crystal RG (1973) J Appl Phys 44:2064–2071

    Article  Google Scholar 

  34. Tasaka S, Miyasato K, Yoshikawa M, Miyata S, Ko M (1984) Ferroelectrics 57:267–276

    Article  CAS  Google Scholar 

  35. Petchsuk A (2003) Ferroelectric terpolymers, based on semicrystalline VDF/TrFE/chloro-containing termonomers: synthesis, electrical properties, and functionalization reactions (Ph.D. thesis). The Pennsylvania State University, University Park

  36. Tasaka S, Inagaki N, Okutani T, Miyata S (1989) Polymer 30:1639–1642

    Article  CAS  Google Scholar 

  37. Wang ZY, Su KH, Fan HQ, Wen ZY (2008) Polymer 49:2542–2547

    Article  CAS  Google Scholar 

  38. Ueda H, Carr SH (1984) Polym J 16:661–667

    Article  CAS  Google Scholar 

  39. Berlepsch HV, Pinnow M, Stark W (1989) J Phys D Appl Phys 22:1143–1152

    Article  Google Scholar 

  40. Ree H, Salomon RE, Labes MM (1979) J Appl Phys 50:3773–3774

    Article  Google Scholar 

  41. Furukawa T, Date M, Nakajima K, Kosaka T, Seo I (1988) Jpn J Appl Phys 27:200–204

    Article  CAS  Google Scholar 

  42. Jo YS, Sakurai M, Inoue Y, Chujo R, Tasaka S, Miyata S (1987) Polymer 28:1583–1588

    Article  Google Scholar 

  43. Miyata S, Yoshikawa M, Tasaka S, Ko M (1980) Polym J 12:857–860

    Article  CAS  Google Scholar 

  44. Jo YS, Inoue Y, Chûjô R, Saito K, Miyata S (1985) Macromolecules 18:1850–1855

    Article  CAS  Google Scholar 

  45. Tasaka S, Toyama T, Inagaki N (1994) Jpn J Appl Phys 33:5838–5841

    Article  CAS  Google Scholar 

  46. Gilbert H, Miller FF, Averill SJ, Carlson EJ, Felt VL, Heller HJ, Stewart FD, Sehmidt RF, Trumbull HL (1956) J Am Chem Soc 78:1669–1675

    Article  CAS  Google Scholar 

  47. Yanko JA, Hawthorne A, Born JW (1958) J Polym Sci 27:145–147

    Article  CAS  Google Scholar 

  48. Furukawa T, Date M, Nakajima K, Kosaka T, Seo I (1986) Jpn J Appl Phys 25:1178–1182

    Article  CAS  Google Scholar 

  49. Miyata S, Yoshikawa M, Tasaka S, Ko M (1980) Polym J 12:875–880

    Article  Google Scholar 

  50. Jo YS, Maruyama Y, Inoue Y, Chûjô R, Tasaka S, Miyata S (1987) Polym J 19:769

    Article  CAS  Google Scholar 

  51. Sakurai M, Ohta Y, Inoue Y, Chûjô R (1991) Polym Commun 32:397–399

    CAS  Google Scholar 

  52. Xiao J, Rosa LG, Poulsen M, Feng DQ, Reddy DS, Takacs JM, Cai L, Zhang J, Ducharme S, Dowben PA (2006) J Phys Condens Matter 18:L155–L161

    Article  CAS  Google Scholar 

  53. Tajitsu Y, Ogura H, Chiba A, Furukawa T (1987) Jpn J Appl Phys 26:554–560

    Article  CAS  Google Scholar 

  54. Tasaka S, Miyata S (1985) J Appl Phys 57:906–910

    Article  CAS  Google Scholar 

  55. Ohigashi H, Omote K, Gomyo T (1995) Appl Phys Lett 66:3281–3283

    Article  CAS  Google Scholar 

  56. Omote K, Ohigashi H, Koga K (1997) J Appl Phys 81:2760–2769

    Article  CAS  Google Scholar 

  57. Ounaies Z, Young JA, Harrison JS (1999) Design requirements for amorphous piezoelectric polymers (NASA/CR-2001-211422; ICASE report no. 2001-43). NASA Langley Research Center, Hampton

  58. Wang ZY, Su KH, Wang F, Wen ZY (2010) Synth Met 160:2341–2350

    Article  CAS  Google Scholar 

  59. Wang ZY, Su KH, Jin LX, Wen ZY (2009) Soft Mater 7:296–318

    Article  CAS  Google Scholar 

  60. Wang ZY, Su KH, Xu Q (2012) J Mater Sci 47:5774–5783

    Google Scholar 

  61. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  62. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New York, pp 177–197

  63. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  64. Conciatori AB, Trapasso LE, Stackman RW (1971) In: Mark HF (ed) Encyclopedia of polymer science and technology, vol. 14. Wiley, New York, p 580

  65. Solymar L, Walsh D (1988) Lectures on the electric properties of materials, 4th edn. Oxford University Press, Oxford

Download references

Acknowledgments

This work was supported by the Shaanxi Province Education Ministry Research Foundation (11JK0559) and Shaanxi University Technology (SLGQD0709). Some of the calculations were performed at the High Performance Computing Center of Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZY., Su, KH. & Xu, Q. Does the copolymer poly(vinylidene cyanide–tricyanoethylene) possess piezoelectricity?. J Mol Model 18, 4699–4708 (2012). https://doi.org/10.1007/s00894-012-1466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1466-4

Keywords

Navigation