Skip to main content
Log in

How many hydrogen-bonded α-turns are possible?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The formation of α-turns is a possibility to reverse the direction of peptide sequences via five amino acids. In this paper, a systematic conformational analysis was performed to find the possible isolated α-turns with a hydrogen bond between the first and fifth amino acid employing the methods of ab initio MO theory in vacuum (HF/6-31G*, B3LYP/6-311 + G*) and in solution (CPCM/HF/6-31G*). Only few α-turn structures with glycine and alanine backbones fulfill the geometry criteria for the i←(i + 4) hydrogen bond satisfactorily. The most stable representatives agree with structures found in the Protein Data Bank. There is a general tendency to form additional hydrogen bonds for smaller pseudocycles corresponding to β- and γ-turns with better hydrogen bond geometries. Sometimes, this competition weakens or even destroys the i←(i + 4) hydrogen bond leading to very stable double β-turn structures. This is also the reason why an “ideal” α-turn with three central amino acids having the perfect backbone angle values of an α-helix could not be localized. There are numerous hints for stable α-turns with a distance between the \( {{\hbox{C}}_\alpha } \)-atoms of the first and fifth amino acid smaller than 6-7 Å, but without an i←(i + 4) hydrogen bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig. 4

Similar content being viewed by others

References

  1. Sewald N, Jakubke HD (2009) Peptides: chemistry and biology. Wiley-VCH

  2. Lewis PN, Momany FA, Scheraga HA (1973) Biochem Biophys Acta 303:211–229

    CAS  Google Scholar 

  3. Richardson JS (1981) Adv Protein Chem 34:167–339

    Article  CAS  Google Scholar 

  4. Rose GD, Gierasch LM, Smith JA (1985) Adv Protein Chem 37:1–109

    Article  CAS  Google Scholar 

  5. Leszczynski JF, Rose GD (1986) Science 234:849–855

    Article  CAS  Google Scholar 

  6. Thornton JM, Sibanda BL, Edwards MS, Barlow DJ (1988) Bioessays 8:63–69

    Article  CAS  Google Scholar 

  7. Tramontano A, Chothia C, Lesk AM (1989) Proteins 6:382–394

    Article  CAS  Google Scholar 

  8. Ring CS, Kneller DG, Langridge R, Cohen FE (1992) J Mol Biol 224:685–699

    Article  CAS  Google Scholar 

  9. Kwasigroch JM, Chomilier J, Mornon JP (1996) J Mol Biol 259:855–872

    Article  CAS  Google Scholar 

  10. Toniolo C (1980) CRC Crit Rev Biochem 9:1–44

    Article  CAS  Google Scholar 

  11. Venkatachalam CM (1968) Biopolymers 6:1425–1436

    Article  CAS  Google Scholar 

  12. Matthews BW (1972) Macromolecules 5:818–819

    Article  CAS  Google Scholar 

  13. Chou PY, Fasman GD (1977) J Mol Biol 115:135–175

    Article  CAS  Google Scholar 

  14. Nemethy G, Scheraga HA (1980) Biochem Biophys Res Commun 95:320–327

    Article  CAS  Google Scholar 

  15. Wilmot CM, Thornton JM (1988) J Mol Biol 203:221–232

    Article  CAS  Google Scholar 

  16. Milner-White EJ, Ross BM, Belhadj-Mostefa K, Poet R (1988) J Mol Biol 204:777–782

    Article  CAS  Google Scholar 

  17. Hutchinson EG, Thornton JM (1994) Protein Sci 3:2207–2216

    Article  CAS  Google Scholar 

  18. Perczel A, McAllister MA, Csaszar P, Csizmadia IG (1993) J Am Chem Soc 115:4849–4858

    Article  CAS  Google Scholar 

  19. Böhm HJ (1993) J Am Chem Soc 115:6152–6158

    Article  Google Scholar 

  20. Möhle K, Gußmann M, Hofmann HJ (1997) J Comput Chem 18:1415–1430

    Article  Google Scholar 

  21. Möhle K, Hofmann HJ, Thiel W (2001) J Comput Chem 22:509–520

    Article  Google Scholar 

  22. Möhle K, Gußmann M, Rost A, Cimiraglia R, Hofmann HJ (1997) J Phys Chem A 101:8571–8574

    Article  Google Scholar 

  23. Pavone V, Gaeta G, Lombardi A, Nastri F, Maglio O, Isernia C, Saviano M (1996) Biopolymers 38:705–721

    Article  CAS  Google Scholar 

  24. Dasgupta B, Pal L, Basu G, Chakrabarti P (2004) Proteins 55:305–315

    Article  CAS  Google Scholar 

  25. Ramachandran GN, Sasisekharan V (1968) Adv Protein Chem 23:283–437

    Article  CAS  Google Scholar 

  26. Nataraj DV, Srinivasan R, Sawdhamini R, Ramakrishnan C (1995) Curr Sci 69:434–447

    CAS  Google Scholar 

  27. Ramakrishnan C, Nataraj DV (1998) J Peptide Sci 4:239–252

    Article  CAS  Google Scholar 

  28. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford, CT

  30. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  31. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  32. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  33. Crisma M, Formaggio F, Moretto A, Toniolo C (2006) Biopolymers 84:3–12

    Article  CAS  Google Scholar 

  34. Rai R, Raghothama S, Balaram P (2006) J Am Chem Soc 128:2675–2681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of this work by Deutsche Forschungsgemeinschaft (project HO 2346/1-3 and SFB 610) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jörg Hofmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, A., Schramm, P. & Hofmann, HJ. How many hydrogen-bonded α-turns are possible?. J Mol Model 17, 1393–1400 (2011). https://doi.org/10.1007/s00894-010-0830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0830-5

Keywords

Navigation