Skip to main content
Log in

Effect of temperature and guanidine hydrochloride on ferrocytochrome c at neutral pH

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Thermally denatured horse heart ferrocytochrome c (ferrocyt c) has been characterized using absorption spectroscopy, differential scanning calorimetry (DSC) and viscometry at pH 7.0. DSC experiments have yielded the transition temperature of denaturant-free ferrocyt c unfolding as 100.6±0.3 °C, indicating an extremely high stability of the protein. The presence of guanidine hydrochloride (GdnHCl) facilitated estimation of the structural features of thermally unfolded ferrocyt c. The stability of the protein, expressed by ΔG D at 25 °C, is 59±5 kJ mol−1 (DSC) and 65±6 kJ mol−1 (absorption spectroscopy). An absorption spectrum of ferrocyt c demonstrates that the heme occurs in the high-spin state at extreme denaturing conditions (94 °C, 6.6 M GdnHCl). Absorption spectroscopy, using heme as a probe, shows that thermal denaturation of ferrocyt c occurs as a transition from a native low-spin (Met80/His18) to a high-spin disordered state with involvement of non-native, low-spin (bis-His) species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

cyt c :

cytochrome c

DSC:

differential scanning calorimetry

ferricyt c :

ferricytochrome c

ferrocyt c :

ferrocytochrome c

GdnHCl:

guanidine hydrochloride

NHE:

normal hydrogen electrode

References

  1. Moore GR, Pettigrew GW (1990) Cytochromes c: evolutionary, structural, and physicochemical aspects. Springer, New York

    Google Scholar 

  2. Dickerson RE, Takano T, Eisenberg D, Kallai OB, Samson L, Cooper A, Margoliash E (1971) J Biol Chem 246:1511–1535

    CAS  PubMed  Google Scholar 

  3. Harbury HA, Cronin JR, Fanger MW, Hettinger TP, Murphy AJ, Myer YP, Vinogradov SN (1965) Proc Natl Acad Sci USA 54:1658–1664

    CAS  PubMed  Google Scholar 

  4. Jeng MF, Englander W, Elöve GA, Wand AJ, Roder H (1990) Biochemistry 29:10433–10436

    CAS  PubMed  Google Scholar 

  5. Moore GR, Williams RJL (1980) Eur J Biochem 103:523–532

    CAS  PubMed  Google Scholar 

  6. Bixler J, Bakker G, McLendon G (1992) J Am Chem Soc 114:6938–6939

    CAS  Google Scholar 

  7. Yoshimura T (1988) Arch Biochem Biophys 264:450–461

    CAS  PubMed  Google Scholar 

  8. Bhuyan AK, Udgaonkar JB (2001) J Mol Biol 312:1135–1160

    CAS  PubMed  Google Scholar 

  9. Thomas YG, Goldbeck RA, Kliger DS (2000) Biopolymers 57:29–36

    Google Scholar 

  10. Pascher T, Chesick JP, Winkler JR, Gray HB (1996) Science 271:1558–1560

    PubMed  Google Scholar 

  11. Goldbeck RA, Thomas YG, Chen E, Esquerra RM, Kliger DS (1999) Proc Natl Acad Sci USA 96:2782–2787

    Article  CAS  PubMed  Google Scholar 

  12. Luck SD, Bhuyan AK, Roder H (1993) Biophys J 64:A173–A173

    Google Scholar 

  13. McLendon G, Smith M (1978) J Biol Chem 253:4004–4008

    CAS  PubMed  Google Scholar 

  14. Hickey DR, Berghuis AM, Lafond G, Jaeger JA, Cardillo TS, McLendon D, Das G, Sherman F, Brayer GD, McLendon G (1991) J Biol Chem 266:11686–11694

    CAS  PubMed  Google Scholar 

  15. Roder H, Elöve GA, Englander SW (1988) Nature 335:700–704

    CAS  PubMed  Google Scholar 

  16. Nall BT, Zuniga EH, White TB, Wood LC, Ramdas L (1989) Biochemistry 28:9834–9839

    CAS  PubMed  Google Scholar 

  17. Tsong TY (1975) Biochemistry 14:1542–1547

    CAS  PubMed  Google Scholar 

  18. Pace CN (1975) CRC Crit Rev Biochem 3:1–43

    CAS  PubMed  Google Scholar 

  19. Schellman JA (1978) Biopolymers 17:1305–1322

    CAS  Google Scholar 

  20. Privalov PL (1992) In: Creighton TE (ed) Protein folding. Freeman, New York, pp 83–126

  21. Pace CN (1986) Methods Enzymol 131:266–280

    CAS  PubMed  Google Scholar 

  22. Santoro MM, Bolen DW (1992) Biochemistry 31:4901–4907

    CAS  PubMed  Google Scholar 

  23. Sinha A, Yadav S, Ahmad R, Ahmad F (2000) Biochem J 345:711–717

    PubMed  Google Scholar 

  24. Vickery L, Nozawa T, Sauer K (1976) J Am Chem Soc 98:351–357

    CAS  PubMed  Google Scholar 

  25. Colón W, Wakem LP, Sherman F, Roder H (1997) Biochemistry 36:12535–12541

    PubMed  Google Scholar 

  26. Elöve GA, Bhuyan AK, Roder H (1994) Biochemistry 33:6925–6935

    CAS  PubMed  Google Scholar 

  27. Telford JR, Tezcan FA, Gray HB, Winkler JR (1999) Biochemistry 38:1944–1949

    Article  CAS  PubMed  Google Scholar 

  28. Taniguchi VT, Sailasuta-Scott N, Anson FC, Gray HB (1980) Pure Appl Chem 52:2275–2281

    CAS  Google Scholar 

  29. Cohen DS, Pielak GJ (1995) J Am Chem Soc 117:1675–1677

    CAS  Google Scholar 

  30. Acevedo O, Guzman-Casado M, Garcia-Mira MM, Ibarra-Molero B, Sanchez-Ruiz JM (2002) Anal Biochem 306:158–161

    PubMed  Google Scholar 

  31. Margoliash E, Frohwirt N (1959) Biochem J 71:570–572

    CAS  Google Scholar 

  32. Kielly W, Harrington WF (1960) Biochim Biophys Acta 41:401–421

    Article  PubMed  Google Scholar 

  33. Santoro MM, Bolen DW (1988) Biochemistry 27:8063–8068

    CAS  PubMed  Google Scholar 

  34. Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1988) Biochemistry 27:1648–1652

    CAS  PubMed  Google Scholar 

  35. Privalov PL, Khechinashvili NN (1974) J Mol Biol 86:665–684

    CAS  PubMed  Google Scholar 

  36. Cohen DS, Pielak GJ (1994) Protein Sci 3:1253–1260

    CAS  PubMed  Google Scholar 

  37. Perl D, Jacob M, Bánó M, Stupák M, Antalík M, Schmid FX (2002) Biophys Chem 96:173–190

    CAS  PubMed  Google Scholar 

  38. Butt WD, Keilin D (1962) Proc Roy Soc B 156:429–457

    Google Scholar 

  39. Bae SJ, Sturtevant JM (1995) Biophys Chem 55:247–252

    CAS  PubMed  Google Scholar 

  40. Mayr LM, Schmid FX (1993) Biochemistry 32:7994–7998

    CAS  PubMed  Google Scholar 

  41. Schultes V, Jaenicke R (1991) FEBS Lett 290:235–238

    CAS  PubMed  Google Scholar 

  42. Jones CM, Henry ER, Hu Y, Chan CK, Luck SD, Bhuyan A, Roder H, Hofrichter J, Eaton WA (1993) Proc Natl Acad Sci USA 90:11860–11864

    PubMed  Google Scholar 

  43. Yoshimura T, Suzuki S, Nakahara A, Iwasaki H, Masuko M, Matsubara T (1985) Biochim Biophys Acta 831:267–274

    CAS  PubMed  Google Scholar 

  44. Tsong TY (1974) J Biol Chem 249:1988–1990

    CAS  PubMed  Google Scholar 

  45. Fisher WR, Taniuchi H, Anfinsen CA (1973) J Biol Chem 248:3188–3195

    CAS  PubMed  Google Scholar 

  46. Stellwagen E (1967) J Biol Chem 242:602–606

    CAS  PubMed  Google Scholar 

  47. Harding SE (1997) Prog Biophys Mol Biol 68:207–262

    CAS  PubMed  Google Scholar 

  48. Doyle DF, Waldner JC, Purikh S, Alcazar-Roman L, Pielak GJ (1996) Biochemistry 35:7403–7411

    CAS  PubMed  Google Scholar 

  49. Kretschmar M, Jaenicke R (1999) J Mol Biol 291:1147–1153

    CAS  PubMed  Google Scholar 

  50. Hagihara Y, Tan Y, Goto Y (1994) J Mol Biol 237:336–348

    CAS  PubMed  Google Scholar 

  51. Víglaský V, Antalík M, Bágel’ová J, Tomori Z, Podhradský D (2000) Electrophoresis 21:850–858

    PubMed  Google Scholar 

  52. Robertson AD, Murphy KP (1997) Chem Rev 97:1251–1267

    Article  CAS  PubMed  Google Scholar 

  53. Pace CN (1990) Trends Biochem Sci 15:14–17

    Article  CAS  PubMed  Google Scholar 

  54. Privalov PL (1979) Adv Protein Chem 33:167–241

    CAS  PubMed  Google Scholar 

  55. Dill KA (1990) Biochemistry 29:7133–7155

    CAS  PubMed  Google Scholar 

  56. Bágel’ová J, Antalík M, Tomori Z (1997) Biochem Mol Biol Int 43:891–900

    PubMed  Google Scholar 

  57. Moza B, Qureshi SH, Ahmad F (2003) Biochim Biophys Acta 1646:49–56

    Article  CAS  PubMed  Google Scholar 

  58. Berghuis AM, Brayer GD (1992) J Mol Biol 223:959–976

    CAS  PubMed  Google Scholar 

  59. Tezcan FA, Winkler JR, Gray HB (1998) J Am Chem Soc 120:13383–13388

    CAS  Google Scholar 

  60. Stellwagen E (1968) Biochemistry 7:2893–2897

    CAS  PubMed  Google Scholar 

  61. Ahmad Z, Ahmad F (1992) Indian J Chem B 31:874–879

    Google Scholar 

  62. Tanford C, Kawahara K, Lapanje S (1967) J Am Chem Soc 89:729–736

    CAS  Google Scholar 

  63. Babul J, Stellwagen E (1971) Biopolymers 10:2359–2361

    CAS  PubMed  Google Scholar 

  64. Muthukrishnan K, Nall BT (1991) Biochemistry 30:4706–4710

    CAS  PubMed  Google Scholar 

  65. Godbole S, Bowler BE (1997) J Mol Biol 268:816–821

    Article  CAS  PubMed  Google Scholar 

  66. Banci L, Bertini I, Spyroulias GA, Turano P (1998) Eur J Inorg Chem 583–591

  67. Filosa A, English AM (2000) J Biol Inorg Chem 5:448–454

    CAS  PubMed  Google Scholar 

  68. Lu J, Liu G, Chen Y, Tang W, Zhu D (1998) Inorg Chim Acta 275–276:58–64

  69. Dopner S, Hildebrandt P, Rosell FI, Mauk AG (1998) J Am Chem Soc 120:11246–11255

    Article  Google Scholar 

  70. Ferrer JC, Guillemette JG, Bogumil R, Inglis SC, Smith M, Mauk AG (1993) J Am Chem Soc 115:7507–7508

    CAS  Google Scholar 

  71. Liu G, Chen Y, Tang W (1997) J Chem Soc Dalton Trans 795–802

  72. Russell BS, Bren KL (2002) J Biol Inorg Chem 7:909–916

    CAS  PubMed  Google Scholar 

  73. Russell BS, Melenkivitz R, Bren KL (2000) Proc Natl Acad Sci USA 97:8312–8317

    CAS  PubMed  Google Scholar 

  74. Meyer TE, Kamen MD (1982) Adv Protein Chem 35:105–212

    CAS  PubMed  Google Scholar 

  75. Finzel BC, Weber PC, Hardman KD, Salemme FR (1985) J Mol Biol 186:627–643

    CAS  PubMed  Google Scholar 

  76. Yoshimura T, Fujii S, Kamada H, Yamaguchi K, Suzuki S, Shidara S, Takakuwa S (1996) Biochim Biophys Acta 1292:39–46

    Article  CAS  PubMed  Google Scholar 

  77. McCrary BS, Edmondson SP, Shriver JW (1996) J Mol Biol 264:784–805

    Article  CAS  PubMed  Google Scholar 

  78. Nojima H, Ikai A, Oshima T, Noda H (1977) J Mol Biol 116:429–442

    CAS  PubMed  Google Scholar 

  79. Klump H, Ruggiero J, Kessel M, Park JB, Adams MWW, Robb F (1992) J Biol Chem 267:22681–22685

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Slovak Grant Agency VEGA no. 3198. We thank Drs. Jaroslava Bágel’ová and Erik Sedlák for helpful comments, and a reviewer for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Antalík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varhač, R., Antalík, M. & Bánó, M. Effect of temperature and guanidine hydrochloride on ferrocytochrome c at neutral pH. J Biol Inorg Chem 9, 12–22 (2004). https://doi.org/10.1007/s00775-003-0492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-003-0492-1

Keywords

Navigation