Skip to main content
Log in

Dietary factors and fibroblast growth factor-23 levels in young adults with African ancestry

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Fibroblast growth factor-23 (FGF23), a phosphaturic hormone secreted mainly by osteocytes, maintains serum phosphate levels within a tight range by promoting phosphaturia. Previous studies have mainly focused on the link between FGF23 levels and dietary intake of phosphate, but other dietary factors may also influence FGF23 levels. This cross-sectional study pooled three populations of young adults with African ancestry (452 in Chicago, IL, USA; 477 in Victoria, Seychelles; and 482 in Kumasi, Ghana) with estimated glomerular filtration rate >80 ml/min/1.73 m2 to examine the association of dietary factors based on two 24-h recalls with FGF23 levels measured using a C-terminal assay. Linear regression was used to examine the association between log-transformed FGF23 levels and quartiles of calorie-adjusted dietary factors with adjustment for covariates. In the pooled sample of 1411 study participants, the mean age was 35.2 (6.2) years and 45.3% were male. Median plasma C-terminal FGF23 values in relative units (RU)/ml were 59.5 [interquartile range (IQR) 44.1, 85.3] in the USA, 43.2 (IQR 33.1, 57.9) in Seychelles, and 34.0 (IQR 25.2, 50.4) in Ghana. With adjustment for covariates, increasing quartiles of calcium and animal protein and decreasing quartiles of vegetable protein, fiber, and magnesium intake were associated with significantly higher FGF23 levels compared to the lowest quartile. After further adjustment for dietary factors, significant trends in FGF23 levels were noted only for quartiles of calcium, fiber, and magnesium intake (P < 0.001). Dietary factors other than phosphate are associated with FGF23 levels in young adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90:1519–1524

    Article  CAS  PubMed  Google Scholar 

  2. Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149

    Article  CAS  PubMed  Google Scholar 

  3. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS (2006) Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 21:1187–1196

    Article  CAS  PubMed  Google Scholar 

  4. Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto K (2016) Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab 34:1–10

    Article  CAS  PubMed  Google Scholar 

  5. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukomoto S, Yamashita T (2003) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Min Res 19:429

    Article  Google Scholar 

  6. Yuen SN, Kramer H, Luke A, Bovet P, Plange-Rhule J, Forrester T, Wolf M, Camacho P, Harders R, Dugas L, Cooper R, Durazo-Arvizu R (2016) Fibroblast growth factor (FGF-23) levels differ across populations by degree of industrialization. J Clin Endocrinol Metab 101:2246–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eckberg K, Kramer H, Wolf M, Durazo-Arvizu R, Tayo B, Luke A, Cooper R (2015) Impact of westernization on fibroblast growth factor 23 levels among individuals of African ancestry. Nephrol Dial Transplant 30:630–635

    Article  CAS  PubMed  Google Scholar 

  8. Torre M, Rodriguez AR, Saura-Calixto F (1991) Effects of dietary fiber and phytic acid on mineral availability. Crit Rev Food Sci Nutr 30:1–22

    Article  CAS  PubMed  Google Scholar 

  9. di Giuseppe R, Kuhn T, Hirche F, Buijsse B, Dierkes J, Fritsche A, Kaaks R, Boeing H, Stangl GI, Weikert C (2015) Potential predictors of plasma fibroblast growth factor 23 concentrations: cross-sectional analysis in the EPIC-Germany Study. PLoS One 10:e0133580 (Electronic Resource)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baia LC, Van den Berg E, Vervloet MG, Heilberg IP, Navis G, Bakker SJ, Geleijnse JM, Kromhout D, Soedamah-Muthu SS, De Borst MH, NIGRAM consortium (2014) Fish and omega-3 fatty acid intake in relation to circulating fibroblast growth factor 23 levels in renal transplant recipients. Nutr Metab Cardiovasc Dis 24:1310–1316

    Article  CAS  PubMed  Google Scholar 

  11. Vervloet MG, van Ittersum FJ, Buttler RM, Heijboer AC, Blankenstein MA, ter Wee PM (2011) Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin J Am Soc Nephrol 6:383–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper R, Forrester T, Ogunbiyi O, Muffinda J (1998) Angiotensinogen levels and obesity in four black populations. ICSHIB Investigators. J Hypertens 16:571–575

    Article  CAS  PubMed  Google Scholar 

  13. Luke A, Bovet P, Forrester TE, Lambert EV, Plange-Rhule J, Schoeller DA, Dugas LR, Durazo-Arvizu RA, Shoham D, Cooper RS, Brage S, Ekelund U, Steyn NP (2011) Protocol for the modeling the epidemiologic transition study: a longitudinal observational study of energy balance and change in body weight, diabetes and cardiovascular disease risk. BMC Public Health 11:927

    Article  PubMed  PubMed Central  Google Scholar 

  14. Steyn NP, Nel JH, Parker WA, Ayah R, Mbithe D (2011) Dietary, social, and environmental determinants of obesity in Kenyan women. Scand J Public Health 39:88–97

    Article  PubMed  Google Scholar 

  15. Orcholski L, Luke A, Plange-Rhule J, Bovet P, Forrester TE, Lambert EV, Dugas LR, Kettmann E, Durazo-Arvizu RA, Cooper RS, Schoeller DA (2015) Under-reporting of dietary energy intake in five populations of the African diaspora. Br J Nutr 113:464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228S

    CAS  PubMed  Google Scholar 

  17. Curhan GC, Willet WC, Knight EL, Stampfer MJ (2004) Dietary factors and the risk of incident kidney stones in younger women. Arch Intern Med 164:885–891

    Article  PubMed  Google Scholar 

  18. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS, CKD-EPI I (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tukey J (1957) On the comparative anatomy of transformations. Ann Math Sci 28:602–632

    Google Scholar 

  20. Walling MW (1977) Intestinal Ca and phosphate transport: differential responses to vitamin D3 metabolites. Am J Physiol 233:E488–E494

    CAS  PubMed  Google Scholar 

  21. Braithwaite V, Jarjou LM, Goldberg GR, Prentice A (2012) Iron status and fibroblast growth factor-23 in Gambian children. Bone (NY) 50:1351–1356

    Article  CAS  Google Scholar 

  22. Sullivan CM, Leon JB, Sehgal AR (2007) Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J Renal Nutr 17:350–354

    Article  Google Scholar 

  23. Scialla JJ, Appel LJ, Wolf M, Yang W, Zhang X, Sozio SM, Miller ER 3rd, Bazzano LA, Cuevas M, Glenn MJ, Lustigova E, Kallem RR, Porter AC, Townsend RR, Weir MR, Anderson CA (2012) Chronic Renal Insufficiency Cohort-CRIC Study Group (2012) Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the Chronic Renal Insufficiency Cohort study. J Renal Nutr 22:379–388.e1

  24. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL, Donahue SE, Asplin JR (2011) Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 6:257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moorthi RN, Armstrong CL, Janda K, Ponsler-Sipes K, Asplin JR, Moe SM (2014) The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease. Am J Nephrol 40:582–591

    Article  CAS  PubMed  Google Scholar 

  26. Kim DJ, Holowaty EJ (2003) Brief, validated survey instruments for the measurement of fruit and vegetable intakes in adults: a review. Prev Med 36:440–447

    Article  PubMed  Google Scholar 

  27. Iqbal TH, Lewis KO, Cooper BT (1994) Phytase activity in the human and rat small intestine. Gut 35:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS, Noori N, Hirschberg R, Benner D, Nissenson AR, Kopple JD (2010) Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol 5:519–530

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi K, Imanishi Y, Miyauchi A, Onoda N, Kawata T, Tahara H, Goto H, Miki T, Ishimura E, Sugimoto T, Ishikawa T, Inaba M, Nishizawa Y (2006) Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur J Endocrinol 154:93–99

    Article  CAS  PubMed  Google Scholar 

  30. Wesseling-Perry K, Wang H, Elashoff R, Gales B, Juppner H, Salusky IB (2014) Lack of FGF23 response to acute changes in serum calcium and PTH in humans. J Clin Endocrinol Metab 99:E1951–E1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L, Gassman JJ, Raj D, Cheung AK, Kusek JW, Flessner MF, Wolf M, Block GA (2015) Rationale and Approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J Am Soc Nephrol 26:2328–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM, Allison MA, Asplin J, Smits G, Hoofnagle AN, Kooienga L, Thadhani R, Mannstadt M, Wolf M, Chertow GM (2012) Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 23:1407–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khouzam NM, Wesseling-Perry K, Salusky IB (2015) The role of bone in CKD-mediated mineral and vascular disease. Pediatr Nephrol 30:1379–1388

    Article  PubMed  Google Scholar 

  34. Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, Martinez-Moreno JM, Ramirez AP, Pineda C, Canalejo A, Jaeger P, Aguilera-Tejero E, Rodriguez M, Felsenfeld A, Almaden Y (2012) Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol 23:1190–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spiegel DM (2007) The role of magnesium binders in chronic kidney disease. Semin Dial 20:333–336

    Article  PubMed  Google Scholar 

  36. Covic A, Passlick-Deetjen J, Kroczak M, Buschges-Seraphin B, Ghenu A, Ponce P, Marzell B, de Francisco AL (2013) A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrol Dial Transpl 28:2383–2392

    Article  CAS  Google Scholar 

  37. de Francisco AL, Leidig M, Covic AC, Ketteler M, Benedyk-Lorens E, Mircescu GM, Scholz C, Ponce P, Passlick-Deetjen J (2010) Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability. Nephrol Dial Transplant 25:3707–3717

    Article  PubMed  PubMed Central  Google Scholar 

  38. David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL, Wolf M (2016) Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89:135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolf M, Koch TA, Bregman DB (2013) Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 28:1793–1803

    Article  CAS  PubMed  Google Scholar 

  40. Wolf M (2010) Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol 21:1427–1435

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Data were presented in poster form at the American Public Health Association Meeting October 2015, Chicago IL (DK). The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institutes of Health or the US Department of Health and Human Services. This study was supported in part by funding from the National Institutes of Health 1R01DK90360-1A1 (RD), 5R01DK080763-04 (AL), and by Loyola University Chicago–Intramural Award LU#204006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly Kramer.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosk, D., Kramer, H., Luke, A. et al. Dietary factors and fibroblast growth factor-23 levels in young adults with African ancestry. J Bone Miner Metab 35, 666–674 (2017). https://doi.org/10.1007/s00774-016-0804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0804-5

Keywords

Navigation