Skip to main content
Log in

Pulsed EPR and ENDOR on the Peridinin Triplet State Involved in the Photoprotective Mechanism in Peridinin–Chlorophyll a–Proteins

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The photoexcited triplet state of the carotenoid peridinin in the peridinin–chlorophyll a–protein (PCP) of the dinoflagellate Heterocapsa pygmaea has been investigated by pulsed electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. The α- and β-protons hyperfine couplings of the peridinin-conjugated chain have been derived from Davies and Mims ENDOR experiments. The spectroscopic results have been compared to those obtained for the main form of the PCP complex and for the high-salt PCP form from Amphidinium carterae. The EPR features of the peridinin triplet state are very similar in the antenna complexes belonging to the two different dinoflagellate species, proving that the triplet formation pathway and the triplet localization on one specific peridinin per subcluster are common features of different PCP antennas. No significant variation of the hyperfine couplings of the peridinin triplet state has been detected between the main form of the PCP complex from A. carterae and H. pygmaea. The spectroscopic results confirm the close relationship between the Amphidinium PCP and the corresponding Heterocapsa complex at least in terms of mutual arrangement of the chlorophyll a–peridinin pair involved in photoprotection and in terms of conformation of the peridinin-conjugated chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Hofmann, P.M. Wrench, F.P. Sharples, R.G. Hiller, W. Welte, K. Diederichs, Science 272, 1788–1791 (1996)

    Article  ADS  Google Scholar 

  2. F.P. Sharples, P.M. Wrench, K.L. Ou, R.G. Hiller, BBA-Bioenerg. 1276, 117–123 (1996)

    Article  Google Scholar 

  3. T. Schulte, F.P. Sharples, R. Hiller, E. Hofmann, Biochemistry 48, 4466–4475 (2009)

  4. R.P. Ilagan, S. Shima, A. Melkozernov, S. Lin, R.E. Blankenship, F.P. Sharples, R.G. Hiller, R.R. Birge, H.A. Frank, Biochemistry 43, 1478–1487 (2004)

    Article  Google Scholar 

  5. R.P. Ilagan, J.F. Koscielecki, R.G. Hiller, F.P. Sharples, G.N. Gibson, R.R. Birge, H.A. Frank, Biochemistry 45, 14052–14063 (2006)

    Article  Google Scholar 

  6. T. Polivka, R.G. Hiller, H.A. Frank, Arch. Biochem. Biophys. 458, 111–120 (2007)

    Article  Google Scholar 

  7. D. Carbonera, G. Giacometti, U. Segre, J. Chem. Soc., Faraday Trans. 92, 989–993 (1996)

    Article  Google Scholar 

  8. D. Carbonera, G. Giacometti, U. Segre, E. Hofmann, R.G. Hiller, J. Phys. Chem. B 103, 6349–6356 (1999)

    Article  Google Scholar 

  9. R.G. Hiller, L.G. Crossley, P.M. Wrench, N. Santucci, E. Hofmann, Mol. Genet. Genomics 266, 254–259 (2001)

    Article  Google Scholar 

  10. H.A. Frank, R.J. Cogdell, Photochem. Photobiol. 63, 257–264 (1996)

    Article  Google Scholar 

  11. J.A. Bautista, R.G. Hiller, F.P. Sharples, D. Gosztola, M. Wasielewski, H.A. Frank, J. Phys. Chem. A 103, 2267–2273 (1999)

    Article  Google Scholar 

  12. F.J. Kleima, M. Wendling, E. Hofmann, E.J.G. Peterman, R. van Grondelle, H. van Amerongen, Biochemistry 39, 5184–5195 (2000)

    Article  Google Scholar 

  13. C.W.M. Kay, M. Di Valentin, K. Möbius, Sol. Energ. Mat. Sol. C. 38, 111–118 (1995)

    Article  Google Scholar 

  14. C.W.M. Kay, M. Di Valentin, K. Möbius, J. Chem. Soc., Perkin Trans 2, 2563–2568 (1997)

    Google Scholar 

  15. C.W.M. Kay, U. Gromadecki, J.T. Torring, S. Weber, Mol. Phys. 99, 1413–1420 (2001)

    Article  ADS  Google Scholar 

  16. A. Marchanka, W. Lubitz, M. van Gastel, J. Phys. Chem. B 113, 6917–6927 (2009)

    Article  Google Scholar 

  17. M. Di Valentin, C.W.M. Kay, G. Giacometti, K. Möbius, Chem. Phys. Lett. 248, 434–441 (1996)

    Article  ADS  Google Scholar 

  18. F. Lendzian, R. Bittl, W. Lubitz, Photosynth. Res. 55, 189–197 (1998)

    Article  Google Scholar 

  19. W. Lubitz, Phys. Chem. Chem. Phys. 4, 5539–5545 (2002)

    Article  Google Scholar 

  20. F. Lendzian, R. Bittl, A. Telfer, W. Lubitz, BBA-Bioenerg. 1605, 35–46 (2003)

    Article  Google Scholar 

  21. M. Di Valentin, S. Ceola, E. Salvadori, G. Agostini, D. Carbonera, BBA-Bioenerg. 1777, 186–195 (2008)

    Article  Google Scholar 

  22. M. Di Valentin, S. Ceola, G. Agostini, G.M. Giacometti, A. Angerhofer, O. Crescenzi, V. Barone, D. Carbonera, BBA-Bioenerg. 1777, 295–307 (2008)

    Article  Google Scholar 

  23. M. Di Valentin, S. Ceola, E. Salvadori, G. Agostini, G.M. Giacometti, D. Carbonera, BBA-Bioenerg. 1777, 1355–1363 (2008)

    Article  Google Scholar 

  24. J. Niklas, T. Schulte, S. Prakash, M. van Gastel, E. Hofmann, W. Lubitz, J. Am. Chem. Soc. 129, 15442–15443 (2007)

    Article  Google Scholar 

  25. T. Polivka, T. Pascher, V. Sundstrom, R.G. Hiller, Photosynth. Res. 86, 217–227 (2005)

    Article  Google Scholar 

  26. D.J. Miller, J. Catmull, R. Puskeiler, H. Tweedale, F.P. Sharples, R.G. Hiller, Photosynth. Res. 86, 229–240 (2005)

    Article  Google Scholar 

  27. S. Parrish, A. Angerhofer, (Annual report NHFML, Talahasse, FL, 1999) pp. 22–23

  28. B.B. Prezelin, F.T. Haxo, Planta 128, 133 (1976)

    Article  Google Scholar 

  29. K. Steck, T. Wacker, W. Welte, F.P. Sharples, R.G. Hiller, FEBS Lett. 268, 48–50 (1990)

    Article  Google Scholar 

  30. T.S. Lin, Chem. Rev. 84, 1–15 (1984)

    Article  Google Scholar 

  31. J. Frick, J.U. Vonschutz, H.C. Wolf, G. Kothe, Mol. Cryst. Liq. Cryst. 183, 269–272 (1990)

    Article  Google Scholar 

  32. Frick J., Phd thesis 1992, Universitaet Stuttgart, Stuttgart

  33. D. Carbonera, M. Di Valentin, G. Agostini, G. Giacometti, P.A. Liddell, D. Gust, A.L. Moore, T.A. Moore, Appl. Magn. Res. 13, 487–504 (1997)

    Article  Google Scholar 

  34. R. Bittl, E. Schlodder, I. Geisenheimer, W. Lubitz, R.J. Cogdell, J. Phys. Chem. B 105, 5525–5535 (2001)

    Article  Google Scholar 

  35. R. Spezia, M. Aschi, A. Di Nola, M. Di Valentin, D. Carbonera, A. Amadei, Biophys. J. 84, 2805–2813 (2003)

    Article  ADS  Google Scholar 

  36. S. Shima, R.P. Ilagan, N. Gillespie, B.J. Sommer, R.G. Hiller, F.P. Sharples, H.A. Frank, R.R. Birge, J. Phys. Chem. A 107, 8052–8066 (2003)

    Article  Google Scholar 

  37. M. Krikunova, H. Lokstein, D. Leupold, R.G. Hiller, B. Voigt, Biophys. J. 90, 261–271 (2006)

    Article  ADS  Google Scholar 

  38. D.L. Dexter, J. Chem. Phys. 21, 836–850 (1953)

    Article  ADS  Google Scholar 

  39. I.H.M. van Stokkum, E. Papagiannakis, M. Vengris, J.M. Salverda, T. Polivka, D. Zigmantas, D.S. Larsen, S.S. Lampoura, R.G. Hiller, R. van Grondelle, Chem. Phys. 357, 70–78 (2009)

    Article  ADS  Google Scholar 

  40. M. Di Valentin, G. Agostini, E. Salvadori, S. Ceola, G.M. Giacometti, R.G. Hiller, D. Carbonera, BBA-Bioenerg. 1787, 168–175 (2009)

    Article  Google Scholar 

  41. M.T.A. Alexandre, D.C. Luhrs, I.H.M. van Stokkum, R. Hiller, M.L. Groot, J.T.M. Kennis, R. Van Grondelle, Biophys. J. 93, 2118–2128 (2007)

    Article  ADS  Google Scholar 

  42. C. Bonetti, M.T.A. Alexandre, R.G. Hiller, J.T.M. Kennis, R. van Grondelle, Chem. Phys. 357, 63–69 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry for University and Research (MURST) under the project PRIN2007. We thank Prof. Giovanni Giacometti for fruitful discussions and advice and Roger Hiller for kindly providing samples of PCP proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Di Valentin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Valentin, M., Salvadori, E., Ceola, S. et al. Pulsed EPR and ENDOR on the Peridinin Triplet State Involved in the Photoprotective Mechanism in Peridinin–Chlorophyll a–Proteins. Appl Magn Reson 37, 191 (2010). https://doi.org/10.1007/s00723-009-0046-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-009-0046-y

Keywords

Navigation