Skip to main content
Log in

Analysis of the shapes of coelomocytes of Aphelasterias japonica in vitro (Echinodermata: Asteroidea)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

A description and formal classification of in vitro spreading coelomocytes from the Aphelasterias japonica sea star was performed using 39 parameters of linear and nonlinear morphometry based on the correlation, factor, and cluster analysis. The comparison of a variety of clustering models revealed the optimum classification parameters and algorithms. As a result, four morphological types of spreading cells significantly differing in a number of structural parameters were identified. This approach may be an important alternative or addition to classical methods of classification of polymorphic, irregularly shaped cells, in particular, cell elements of the invertebrate immune system. It provides the optimum methodology for structural analysis and classification of cells as a part of their further investigation in terms of structure, function, ontogeny, and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Boschek CB, Jockusch BM, Friis RR, Back R, Grundmann E, Bauer H (1981) Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24(1):175–184. doi:10.1016/0092-8674(81)90513-4

    Article  CAS  PubMed  Google Scholar 

  • Brock G, Pihur V, Datta S, Datta S (2008) clValid: an R package for cluster validation. J Stat Software 25:1–22. doi:10.18637/jss.v025.i04

    Article  Google Scholar 

  • Chiang AS, Gupta AP, Han SS (1988) Arthropod immune system: I. Comparative light and electron microscopic accounts of immunocytes and other hemocytes of Blattella germanica (Dictyoptera: Blattellidae). J Morphol 198(3):257–267. doi:10.1002/jmor.1051980302

    Article  Google Scholar 

  • Costello AB, Osborne LW (2005) Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis. Practical Assessment, Research and Evaluation 10(7):1–9 http://pareonline.net/getvn.asp?v=10&n=7

    Google Scholar 

  • Dokukin ME, Guz NV, Woodworth CD, Sokolov I (2015) Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer. New J Phys 17:033019. doi:10.1088/1367-2630/17/3/033019

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher WS (1986) Structure and functions of oyster hemocytes. In: Dr Brehélin M (ed) Immunity in invertebrates. Springer Verlag, Berlin, pp 25–35 ISBN: 978-3-642-70770-4

    Chapter  Google Scholar 

  • González J, Gamundi A, Rial R, Nicolau MC, de Vera L, Pereda E (1999) Nonlinear, fractal, and spectral analysis of the EEG of lizard, Gallotia galloti. Am J Physiol Regul Integr Comp Physiol 277(1):R86–R93 pmid: 10409261

    Google Scholar 

  • Gordon AD (1999) Classification, 2nd edn. Chapman and Hall/CRC, Washington DC ISBN 9781584880134

    Google Scholar 

  • Hine PM (1999) The inter-relationship of bivalve haemocytes. Fish & Shellfish Immunology 9:367–385. doi:10.1006/fsim.1998.0205

    Article  Google Scholar 

  • Kanungo K (1984) The coelomocytes of asteroid echinoderms. In: Cheng TC (ed) Comparative pathobiology. Volume 6. Invertebrate blood. cells and serum factors. Springer, US, pp. 7–39. ISBN: 978–1–4684-4768-2. doi: 10.1007/978-1-4684-4766-8

  • Karetin YA (2016) Nonlinear analysis of hemocyte morphology in the sea stars Aphelasterias japonica (Bell, 1881), Patiria Pectinifera (Muller et Troschel, 1842), and the bivalve Callista brevisiphonata (Carpenter, 1864). Russ J Mar Biol 42(4):275–282

    Article  Google Scholar 

  • Karetin YA, Pushchin II (2015) Analysis of the shapes of hemocytes of Callista brevisiphonata in vitro (Bivalvia, Veneridae). Cytometry A 87(8):773–776. doi:10.1002/cyto.a.22676

    Article  PubMed  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, New York ISBN 0-47 1-73578-7

    Book  Google Scholar 

  • Kurtz J (2002) Phagocytosis by invertebrate hemocytes: causes of individual variation in Panorpa vulgaris scorpion flies. Microsc Res Tech 57(6):456–468. doi:10.1002/jemt.10099

    Article  PubMed  Google Scholar 

  • Li BL (2000) Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol Mod 132(1–2):33–50. doi:10.1016/S0304-3800(00)00303-3

    Article  Google Scholar 

  • Marchisio PC, Capasso O, Nitsch L, Cancedda R, Gionti E (1984) Cytoskeleton and adhesion patterns of cultured chick embryo chondrocytes during cell spreading and Rous sarcoma virus transformation. Exp Cell Res 151(2):332–343. doi:10.1016/0014-4827(84)90384-7

    Article  CAS  PubMed  Google Scholar 

  • Martin GG, Hose JE (1992) Vascular elements and blood (hemolymph). Microscopic Anatomy of Invertebrates 10:117–146

    Google Scholar 

  • Pushchin II, Karetin Y (2009) Retinal ganglion cells in the eastern newt Notophthalmus viridescens: topography, morphology, and diversity. J Comp Neurol 516(6):533–552. doi:10.1002/cne.22127

    Article  PubMed  Google Scholar 

  • Pushchin I, Karetin Y (2014) Retinal ganglion cells in the Pacific redfin, Tribolodon brandtii dybowski, 1872: morphology and diversity. J Comp Neurol 522(6):1355–1372. doi:10.1002/cne.23489

    Article  PubMed  Google Scholar 

  • Scapigliatia G, Mazzinia M (1994) In vivo and in vitro phagocytosis by hemocytes of the stick insect Bacillus rossius. Bolletino di zoologia 61(2):115–120. doi:10.1080/11250009409355869

    Article  Google Scholar 

  • Schweitzer L, Renehan WE (1997) The use of cluster analysis for cell typing. Brain Res Protocol 1:100–108. doi:10.1016/s1385-299x(96)00014-1

    Article  CAS  Google Scholar 

  • Soares T, Cavalcanti MG, Ferreira FR, Cavalcanti Mdo S, Alves LC, Brayner FA, Paiva PM (2013) Ultrastructural characterization of the hemocytes of Lasiodora sp. (Koch, 1850) (Araneae: Theraphosidae). Micron 48:11–16. doi:10.1016/j.micron.2013.02.002

    Article  PubMed  Google Scholar 

  • Stoepler TM, Castillo JC, Lill JT, Eleftherianos I (2013) Hemocyte density increases with developmental stage in an immune-challenged Forest Caterpillar. PLoS One 8(8):e70978. doi:10.1371/journal.pone.0070978 pmcid: pmc3735507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, Page C, Volkmann N, Hanein D, Sivaramakrishnan S, Kozlov MM, Bershadsky AD (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17:445–457. doi:10.1038/ncb3137

    Article  CAS  PubMed  Google Scholar 

  • Überla K (1971) Faktorenanalyse. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-61985-4

    Book  Google Scholar 

  • Vignaud T, Blanchoin L, Théryemail M (2012) Directed cytoskeleton self-organization. Trends Cell Biol 22(12):671–682. doi:10.1016/j.tcb.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  • Voroshilov AS, Meigal AY (2011) The nonlinear parameters of an interference electromyogram in two-day-old human newborns. Hum Physiol 37(3):283–290. doi:10.1134/S0362119711020216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Karetin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Margit Pavelka

Electronic supplementary material

ESM 1

(DOC 52 kb)

ESM 2

(DOC 2876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karetin, Y., Pushchin, I. Analysis of the shapes of coelomocytes of Aphelasterias japonica in vitro (Echinodermata: Asteroidea). Protoplasma 254, 1805–1811 (2017). https://doi.org/10.1007/s00709-017-1078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1078-z

Keywords

Navigation