Skip to main content
Log in

Sporoderm development in Acer tataricum (Aceraceae): an interpretation

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

For the first time, the developmental events in the course of complicated exine structure establishment have been traced in detail with transmission electron microscope in the representative of Acer. A new look at unfolding events is suggested using the knowledge of a boundary field, colloid science. Our purpose was to find out whether the sequence of sporoderm developmental events represents, in essence, the sequence of self-assembling micellar mesophases, initiated by genomically given physicochemical parameters and induced by surfactant glycoproteins at increasing concentration. Indeed, the first units observed in the periplasmic space are globular ones (=spherical micelles) which become arranged into rod-like units (=cylindrical micelles). Then, twisted clusters of rodlets form a layer of procolumellae (middle micellar mesophase). The tectum emerges as an untwisting and merging of distal ends of procolumellae (distal untwist of micelle clusters). In the end of tetrad period, when a hydrophilic–hydrophobic switch occurs in the periplasmic space, the contrast reversal of the columellae corresponds to the change of normal micelles to reverse ones. The initiation of the foot layer and the endexine lamellae, with their typical central “white lines”, corresponds to the next—“neat”—mesophase, with its typical central gaps between layers. Aperture sites during development show all the main micellar mesophases and their transitional forms. The data received have supported our previous hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ball P (1994) Designing the molecular world. Princeton University Press, Princeton

    Google Scholar 

  • Ben Nasri-Ayachi M, Nabli MA (2009) Ultrastructure and ontogeny of the exine in Tribulus terrestris Linné (Zygophyllaceae). Grana 48:109–121

    Article  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  PubMed  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Gabarayeva NI, Rowley JR (2010) Developmental origins of structural diversity in pollen walls of Compositae. Plant Syst Evol 284:17–32.

    Article  Google Scholar 

  • Collinson ME, Hemsley AR, Taylor WA (1993) Sporopollenin exhibiting colloidal organization in spore walls. Grana Supplement 1:31–39

    Article  Google Scholar 

  • Dickinson HG (1976a) The deposition of acetolysis-resistent polymers during the formation of pollen. Pollen Spores 18:321–334

    Google Scholar 

  • Dickinson HG (1976b) Common factors in exine deposition. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic, London, pp 67–89

    Google Scholar 

  • Dunbar A, Rowley JR (1984) Betula pollen development before and after dormancy: exine and intine. Pollen Spores 26:299–338.

    Google Scholar 

  • Dzyuba OF, Shurekova OV, Tokarev PI (2006) On the natural polymorphism of pollen grains of Acer tataricum L. Paleontological Journal (Nauka, Russia) 40(suppl 5):590–594

    Article  Google Scholar 

  • El-Ghazaly G, Jensen WA (1987) Development of wheat (Triticum aestivum) pollen. II. Histochemical differentiation of wall and Ubisch bodies during development. Am J Bot 74:1396–1418

    Article  Google Scholar 

  • Florence AT (1977) Biological meaning of micellization. In: Mittal KL (ed) Micellization, solubilization, and microemulsions, vol 1,2. Plenum, New York, pp 42–62

    Google Scholar 

  • Gabarayeva NI (1991) Patterns of development in primitive angiosperm pollen. In: Blackmore S, Barnes SH (eds) Pollen and spores. Clarendon, Oxford, pp 257–268

    Google Scholar 

  • Gabarayeva NI (1993) Hypothetical ways of exine pattern determination. Grana 33(Suppl 2):54–59

    Article  Google Scholar 

  • Gabarayeva NI (1995) Pollen wall and tapetum development in Anaxagorea brevipes (Annonaceae): sporoderm substructure, cytoskeleton, sporopollenin precursor particles, and the endexine problem. Rev Palaeobot Palynol 85:123–152

    Article  Google Scholar 

  • Gabarayeva NI (2000) Principles and recurrent themes in sporoderm development. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Bot Gardens, Kew, pp 1–17

    Google Scholar 

  • Gabarayeva NI, El-Ghazaly G (1997) Sporoderm development in Nymphaea mexicana (Nymphaeaceae). Plant Syst Evol 204:1–19

    Article  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV (2002) Exine development in Stangeria eriopus (Stangeriaceae): ultrastructure and substructure, SP accumulation, the equivocal character of the aperture, and stereology of microspore organelles. Rev Palaeobot Palynol 122:185–218

    Article  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV (2003) Comparative study of the pollen wall development in Illicium floridanum (Illiciaceae) and Schisandra chinensis (Schisandraceae). Taiwania 48:147–167

    Google Scholar 

  • Gabarayeva NI, Grigorjeva VV (2010) Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae). Self-assembly as the underlying cause of development. Grana (in press)

  • Gabarayeva NI, Grigorjeva VV (2004) Exine development in Encephalartos altensteinii (Cycadaceae): ultrastructure, substructure and the modes of SP accumulation. Rev Paleobot Palynol 132:175–193

    Article  Google Scholar 

  • Gabarayeva NI, Hemsley AR (2006) Merging concepts: the role of self-assembly in the development of pollen wall structure. Rev Palaeobot Palynol 138:121–139

    Article  Google Scholar 

  • Gabarayeva NI, Rowley JR (1994) Exine development in Nymphaea colorata (Nymphaeaceae). Nordic J Bot 14:671–691

    Article  Google Scholar 

  • Gabarayeva NI, Rowley JR, Skvarla JJ (1998) Exine development in Borago (Boraginaceae). 1. Microspore tetrad period. Taiwania 43:203–214

    Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Rowley JR (2003) Sporoderm ontogeny in Cabomba aquatica (Cabombaceae). Rev Palaeobot Palynol 127:147–173

    Article  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV, Rowley JR (2010) Sporoderm ontogeny and tapetum input in Persea americana. The micellar seamy side of the development. Annals of Botany (in press)

  • Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR (2009a) Sporoderm development in Trevesia burckii (Araliaceae). I. Tetrad period: further evidence for participating of self-assembly processes. Rev Palaeobot Palynol 156:211–232

    Article  Google Scholar 

  • Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR (2009b) Sporoderm development in Trevesia burckii (Araliaceae). II. Post-tetrad period: further evidence for participating of self-assembly processes. Rev Palaeobot Palynol 156:233–247

    Article  Google Scholar 

  • Gingell D (1973) Membrane permeability change by aggregation of mobile glycoprotein units. J Theoret Biol 38:677–679

    Article  CAS  Google Scholar 

  • Griffiths PC, Hemsley AR (2001) Rasberries and muffins—mimicking biological pattern formation. Colloids Surf B: Biointerfaces 25:163–170

    Article  Google Scholar 

  • Gunning BES, Steer MW (1986) Plant cell biology. An ultrastructural approach. University College Dublin, Dublin

    Google Scholar 

  • Hemsley AR, Gabarayeva NI (2007) Exine development: the importance of looking through a colloid chemistry “window”. Plant Syst Evol 263:25–49

    Article  Google Scholar 

  • Hemsley AR, Griffiths PC (2000) Architecture in the microcosm: biocolloids, self-assembly and pattern formation. Phil Trans R Soc Lond A 358:547–564

    Article  CAS  Google Scholar 

  • Hemsley AR, Collinson ME, Brain APR (1992) Colloidal crystal-like structure of sporopollenin in the megaspore walls of recent Selaginella and similar fossil spores. Bot J Linn Soc 108:307–320

    Article  Google Scholar 

  • Hemsley AR, Jenkins PD, Collinson ME, Vincent B (1996) Experimental modelling of exine self-assembly. Bot J Linn Soc 121:177–187

    Article  Google Scholar 

  • Hemsley AR, Vincent B, Collinson ME, Griffiths PC (1998) Simulated self-assembly of spore exines. Ann Bot 82:105–109

    Article  Google Scholar 

  • Hemsley AR, Collinson ME, Vicent B, Griffiths PC, Jenkins PD (2000) Self-assembly of colloidal units in exine development. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Bot. Gardens, Kew, pp 31–44

    Google Scholar 

  • Hemsley AR, Griffiths PC, Mathias R, Moore SEM (2003) A model for the role of surfactants in the assembly of exine sculpture. Grana 42:38–42

    Article  Google Scholar 

  • Hemsley AR, Lewis J, Griffiths PC (2004) Soft and sticky development: some underlying reasons for microarchitectural pattern convergence. Review Palaeobot. Palynol. 130:105–119

    Google Scholar 

  • Heslop-Harrison J (1972) Pattern in plant cell walls: morphogenesis in miniature. Proc Royal Inst Great Britain 45:335–351

    Google Scholar 

  • Hesse M (1985) Hemispherical surface processes of exine and orbicules in Calluna (Ericaceae). Grana 24:93–98

    Article  Google Scholar 

  • Jacobs CA, Lersten NR (1994) Microsporogenesis and endothecial wall patterns in black maple (Acer saccharum subsp. nigrum, Aceraceae). Bull Torrey Bot Club 121:180–187

    Article  Google Scholar 

  • Lecuit T (2008) “Developmental mechanics”: cellular patterns controlled by adhesion, cortical tension and cell division. HFSP J. doi:10.2976/1.2896332

    PubMed  Google Scholar 

  • Lipowsky R (1991) The conformation of membranes. Nature 349:475–481

    Article  CAS  PubMed  Google Scholar 

  • Moore SEM, Gabarayeva N, Hemsley AR (2009) Morphological, developmental and ultrastructural comparison of Osmunda regalis L. spores with spore mimics. Rev Palaeobot Palynol 156:177–184

    Article  Google Scholar 

  • Morbelli MA, Rowley JR (1993) Megaspore development in Selaginella. “Wicks”, their presence, ultrastructure and presumed function. Sex Plant Reprod 6:98–107

    Article  Google Scholar 

  • Pettitt JM (1976) A rout for the passage of substances through the developing Pteridophyte exine. Protoplasma 88:117–131

    Article  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  • Plaschina IG, Muratalijeva IR, Semenova MG, Braudo EE, Tolstoguzov VB (1985) Correlation between conformation of flexichain polymers and their capacity to form thermoreversible gels. In: Gembichki LS (ed) Processes of gel-formation in polymer systems. Saratov University, Saratov, pp 66–69

    Google Scholar 

  • Pozhidaev AE (1993) Polymorphism of pollen in the genus Acer (Aceracear). Grana 32:79–85

    Article  Google Scholar 

  • Rowley JR (1990) The fundamental structure of the pollen exine. Pl Syst Evol Suppl 5:13–29

    Google Scholar 

  • Rowley JR, Claugher D (1996) Structure of the exine of Epilobium angustifolium (Onagraceae). Grana 35:79–86

    Google Scholar 

  • Rowley JR, Morbelli MA (2009) Connective structures between tapetal cells and spores in Lycophyta and pollen grains in angiosperms. A review. Rev Palaeobot Palynol 156:157–164

    Article  Google Scholar 

  • Rowley JR, Rowley JS (1998) Stain reversal in pollen exines. In: Narendra MD (ed) Current concepts in pollen-spore and biopollination research. Research Periodicals and Book Publishing House, India, pp 223–232

    Google Scholar 

  • Rowley JR, Flynn JJ, Takahashi M (1995) Atomic force microscope information on pollen exine substructure in Nuphar. Bot Acta 108:300–308

    Google Scholar 

  • Rowley JR, Skvarla JJ, El-Ghazaly G (2003) Transfer of material through the microspore exine—from the loculus into the cytoplasm. Can J Bot 81:1070–1082

    Article  Google Scholar 

  • Rowley JR, Skvarla JJ, Pettitt JM (1992) Pollen wall development in Eucommia ulmoides (Eucommiaceae). Rev Palaeobot Palynol 70:297–323

    Article  Google Scholar 

  • Rowley JR, Skvarla JJ, Gabarayeva NI (1999a) Exine development in Borago (Boraginaceae). 2. Free microspore stages. Taiwania 44:212–229

    Google Scholar 

  • Rowley JR, Skvarla JJ, Walles B (1999b) Microsporogenesis in Pinus sylvestris. VII. Exine expansion and tapetal development. Taiwania 44:325–344

    Google Scholar 

  • Sheldon JM, Dickinson HG (1983) Determination of patterning in the pollen wall of Lilium henryi. J Cell Sci 63:191–208

    CAS  PubMed  Google Scholar 

  • Skvarla JJ, Rowley JR (1987) Ontogeny of pollen in Poinciana (Leguminosae). I. Development of exine template. Rev palaeobot Palynol 50:239–311

    Google Scholar 

  • Takahashi M (1993) Exine initiation and substructure in pollen of Caesalpinia japonica (Leguminosae: Caesalpinioidea). Am J B 80:192–197

    Article  Google Scholar 

  • Thompson DA (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • van Uffelen GA (1991) The control of spore wall formation. In: Blackmore S, Barnes SH (eds) Pollen and spores: patterns of diversification. Clarendon, Oxford, pp 89–102

    Google Scholar 

  • Wyatt SE, Carpita NC (1993) The plant cytoskeleton–cell-wall continuum. Trends Cell Biol 3:413–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by RFBR grant No. 08-04-00498. We also thank our engineer Peter Tzinman for assistance with Hitachi H-600 TEM.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina I. Gabarayeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabarayeva, N.I., Grigorjeva, V.V. & Rowley, J.R. Sporoderm development in Acer tataricum (Aceraceae): an interpretation. Protoplasma 247, 65–81 (2010). https://doi.org/10.1007/s00709-010-0141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0141-9

Keywords

Navigation