Skip to main content
Log in

Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Interfacial stress transfer of single-walled carbon nanotube-reinforced polymer composites subjected to uniaxial tension was investigated by a newly developed shear-lag model integrated with a spring layer model. A linear relationship between the tangential relative displacement and the interfacial shear stress was assumed for the interface which is determined by van der Waals forces. The interface stiffness parameter was determined through comparing the stress distribution of the shear-lag model with multiscale simulation results. The effect of the interface stiffness and the nanotube’s aspect ratios on the distribution of stress in CNT-reinforced composites was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  2. Maruyama, B., Alam, H.: Carbon nanotubes and nanofibers in composite materials. Sampe J. 38(3), 59–70 (2002)

    Google Scholar 

  3. Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000)

    Article  Google Scholar 

  4. Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)

    Article  Google Scholar 

  5. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)

    Article  Google Scholar 

  6. Chang, B.H., Liu, Z.Q., Sun, L.F., Tang, D.S., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Fen, J.H., Wan, M.X.: Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. J. Low. Temp. Phys. 119(1), 41–48 (2000)

    Article  Google Scholar 

  7. Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)

    Article  Google Scholar 

  8. Chen, X.M., Zheng, M., Park, C., Ke, C.H.: Direct measurements of the mechanical strength of carbon nanotube–poly(methyl methacrylate) interfaces. Small 9(19), 3345–3351 (2013)

    Google Scholar 

  9. Lordi, V., Yao, N.: Molecular mechanics of binding in carbon–nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000)

    Article  Google Scholar 

  10. Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)

    Article  Google Scholar 

  11. Subramanian, N., Rai, A., Chattopadhyay, A.: Atomistically derived cohesive behavior of interphases in carbon fiber reinforced CNT nanocomposites. Carbon 117, 55–64 (2017)

    Article  Google Scholar 

  12. Frankland, S.J.V., Harik, V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525(1), L103–L108 (2003)

    Article  Google Scholar 

  13. Frankland, S.J.V., Caglar, A., Brenner, D.W., Griebel, M.: Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces. J. Phys. Chem. B 106(12), 3046–3048 (2002)

    Article  Google Scholar 

  14. Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W., Gates, T.S.: The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)

    Article  Google Scholar 

  15. Gou, J.H., Minaie, B., Wang, B., Liang, Z.Y., Zhang, C.: Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31(3–4), 225–236 (2004)

    Article  Google Scholar 

  16. Xiong, Q.L., Meguid, S.A.: Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur. Polym. J. 69, 1–15 (2015)

    Article  Google Scholar 

  17. Wagner, H.D.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)

    Article  Google Scholar 

  18. Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids. Struct. 42(5–6), 1649–1667 (2005)

    Article  MATH  Google Scholar 

  19. Tsai, J.L., Lu, T.C.: Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites. Compos. Struct. 90(2), 172–179 (2009)

    Article  Google Scholar 

  20. Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011)

    Article  Google Scholar 

  21. Li, C.Y., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)

    Article  Google Scholar 

  22. Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)

    Article  Google Scholar 

  23. Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D. Appl. Phys. 36(5), 573–582 (2003)

    Article  Google Scholar 

  24. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72 (1952)

    Article  Google Scholar 

  25. McCartney, L.N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Reddy, J.N., Reifsnider, K.L. (eds.) Local Mechanics Concepts for Composite Material Systems, pp. 251–282. Springer, Berlin (1992)

    Chapter  Google Scholar 

  26. Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)

    Article  Google Scholar 

  27. Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71(1), 68–77 (2005)

    Article  Google Scholar 

  28. Ang, K.K., Ahmed, K.S.: An improved shear-lag model for carbon nanotube reinforced polymer composites. Compos. Part. B Eng. 50, 7–14 (2013)

    Article  Google Scholar 

  29. Guo, G.D., Zhu, Y.: Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate. J. Appl. Mech. 82(3), 031005 (2015)

    Article  Google Scholar 

  30. Ansari, R., Rouhi, S., Momen, A.: Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method. Appl. Phys. A 119(3), 1039–1045 (2015)

    Article  Google Scholar 

  31. Lene, F.: Homogenized constitutive law for a partially cohesive composite material. Int. J. Solids Struct. 18(5), 443–458 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Frontier and Application Basic Research Program of Chongqing Science and Technology Commission (Grant Nos. cstc2015jcyjA50030, cstc2018jcyjAX0696), Fundamental Research Funds for the Central Universities (Project Nos.106112017CDJZRPY0015, 2018CDQYHK0029) and supported by 111 Project of China (Grant No. B18062). The work was also supported by the National Natural Science Foundation of China (Grant No.11672099). The authors thank Dr. Li Chunyu for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Gao Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YG., Li, Y.F., Han, J. et al. Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model. Acta Mech 230, 2771–2782 (2019). https://doi.org/10.1007/s00707-019-02426-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02426-7

Navigation