Skip to main content
Log in

Nitric oxide- and cGMP-active compounds affect the discharge of substantia nigra pars reticulata neurons: in vivo evidences in the rat

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The nitric oxide (NO)-active drugs influence on the bioelectric activity of neurons of the pars reticulata of the substantia nigra was studied in urethane-anesthetized rats. A first group of animals was treated with 7-nitro-indazole (7-NI), a preferential inhibitor of neuronal NO synthase. In a second group of rats, electrophysiological recordings were coupled with microiontophoretic administration of Nω-nitro-l-arginine methyl ester (l-NAME, a NO synthase inhibitor), 3-morpholino-sydnonimin-hydrocloride (SIN-1, a NO donor) and 8-Br-cGMP (a cell-permeable analogue of cGMP, the main second-messenger of NO neurotransmission). 7-NI and l-NAME caused a statistically significant decrease in the firing rate of most of the responsive cells, while application of SIN-1 and 8-Br-CGMP induced statistically significant excitatory effects. The results suggest a NO mediated excitatory modulation of the SNr neurons activity with a possible involvement of the cGMP pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahern GP, Klyachko VA, Jackson MB (2002) cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25:510–517

    Article  PubMed  CAS  Google Scholar 

  • Atherton JF, Bevan MD (2005) Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci 26:8272–8281

    Article  Google Scholar 

  • Bush MA, Pollack GM (2001) Pharmacokinetics and pharmacodynamics of 7-nitroindazole, a selective nitric oxide synthase inhibitor, in the rat hippocampus. Pharm Res 18:1607–1612

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Gubellini P, Centonze D, Sancesario G, Morello M, Giorgi M, Pisani A, Bernardi G (1999) A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J Neurosci 19:2489–2499

    PubMed  CAS  Google Scholar 

  • Cox BA, Johnson SW (1998) Nitric oxide facilitates N-methyl-d-aspartate-induced burst firing in dopamine neurons from rat midbrain slices. Neurosci Lett 255:131–134

    Article  PubMed  CAS  Google Scholar 

  • Cudeiro J, Rivadulla C, Rodríguez R, Grieve KL, Martínez-Conde S, Acuña C (1997) Actions of compounds manipulating the nitric oxide system in the cat primary visual cortex. J Physiol 504:467–478

    Article  PubMed  CAS  Google Scholar 

  • De Vente J, Hopkins DA, Markerink-Van Ittersum M, Emson PC, Schmidt HH, Steinbusch HW (1998) Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP-producing structures in the rat brain. Neuroscience 87:207–241

    Article  PubMed  Google Scholar 

  • Deniau JM, Mailly P, Maurice N, Charpier S (2007) The pars reticulata of the substantia nigra: a window to basal ganglia output. Prog Brain Res 160:151–172

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    Article  PubMed  CAS  Google Scholar 

  • Ferraro G, Montalbano ME, La Grutta V (1999) Nitric oxide and glutamate interaction in the control of cortical and hippocampal excitability. Epilepsia 40:830–836

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Forero D, Portillo F, Gomez L, Montero F, Kasparov S, Moreno-Lopez B (2007) Inhibition of resting potassium conductances by long-term activation of the NO/cGMP/protein kinase G pathway: a new mechanism regulating neuronal excitability. J Neurosci 27:6302–6312

    Article  PubMed  CAS  Google Scholar 

  • González-Hernández T, Rodríguez M (2000) Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J Comp Neurol 421:107–135

    Article  PubMed  Google Scholar 

  • Iwase K, Iyama K, Akagi K, Yano S, Fukunaga K, Miyamoto E, Mori M, Takiguchi M (1998) Precise distribution of neuronal nitric oxide synthase mRNA in the rat brain revealed by non-radioisotopic in situ hybridization. Brain Res Mol Brain Res 53:1–12

    Article  PubMed  CAS  Google Scholar 

  • Kalisch BE, Connop BP, Jhamandas K, Beninger RJ, Boegman RJ (1996) Differential action of 7-nitro indazole on rat brain nitric oxide synthase. Neurosci Lett 219:75–78

    Article  PubMed  CAS  Google Scholar 

  • Kara P, Friedlander MJ (1999) Arginine analogs modify signal detection by neurons in the visual cortex. J Neurosci 19:5528–5548

    PubMed  CAS  Google Scholar 

  • Kleppisch T, Feil R (2009) cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handb Exp Pharmacol 191:549–579

    Article  PubMed  CAS  Google Scholar 

  • Kolomiets BP, Deniau JM, Glowinski J, Thierry AM (2003) Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata. Neuroscience 117:931–938

    Article  PubMed  CAS  Google Scholar 

  • Korotkova TM, Eriksson KS, Haas HL, Brown RE (2002) Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regul Pept 104:83–89

    Article  PubMed  CAS  Google Scholar 

  • Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci USA 101:2625–2630

    Article  PubMed  CAS  Google Scholar 

  • Ledo A, Frade J, Barbosa RM, Laranjinha J (2004) Nitric oxide in brain: diffusion, targets and concentration dynamics in hippocampal subregions. Mol Aspects Med 25:75–89

    Article  PubMed  CAS  Google Scholar 

  • Lovick TA, Key BJ (1996) Inhibitory effect of nitric oxide on neuronal activity in the periaqueductal grey matter of the rat. Exp Brain Res 108:382–388

    Article  PubMed  CAS  Google Scholar 

  • Murer MG, Riquelme LA, Tseng KY, Pazo JH (1997) Substantia nigra pars reticulata single unit activity in normal and 60HDA-lesioned rats: effects of intrastriatal apomorphine and subthalamic lesions. Synapse 27:278–293

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma S, Katsura M (2001) Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 64:97–108

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in steretaxic co-ordinates. Academic Press, San Diego

    Google Scholar 

  • Percheron G, François C, Yelnik J, Fenelon G, Talbi B (1994) The basal ganglia related systems of primates: definition, description and informational analysis. In: Percheron G, McKenzie GM, Feger J (eds) The Basal Ganglia IV. Plenum Press, New York, pp 3–20

    Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  PubMed  CAS  Google Scholar 

  • Sardo P, Ferraro G, Di Giovanni G, Galati S, La Grutta V (2002a) Inhibition of nitric oxide synthase influences the activity of striatal neurons in the rat. Neurosci Lett 325:179–182

    Article  PubMed  CAS  Google Scholar 

  • Sardo P, Ferraro G, Di Giovanni G, Galati S, La Grutta V (2002b) Influence of nitric oxide on the spontaneous activity of globus pallidus neurones in the rat. J Neural Transm 109:1373–1389

    Article  PubMed  CAS  Google Scholar 

  • Sardo P, Ferraro G, Di Giovanni G, La Grutta V (2003) Nitric oxide-induced inhibition on striatal cells and excitation on globus pallidus neurons: a microiontophoretic study in the rat. Neurosci Lett 343:101–104

    Article  PubMed  CAS  Google Scholar 

  • Sardo P, Ferraro G, Carletti F, D’Agostino S, La Grutta V (2006a) The discharge of subthalamic neurons is modulated by inhibiting the nitric oxide synthase in the rat. Neurosci Lett 396:252–256

    Article  PubMed  CAS  Google Scholar 

  • Sardo P, Carletti F, D’Agostino S, Rizzo V, Ferraro G (2006b) Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat. Eur J Neurosci 24:1995–2002

    Article  PubMed  Google Scholar 

  • Shaw PJ, Salt TE (1997) Modulation of sensory and excitatory amino acid responses by nitric oxide donors and glutathione in the ventrobasal thalamus of the rat. Eur J Neurosci 9:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Threlfell S, Cragg SJ, Kallo I, Turi GF, Coen CW, Greenfield SA (2004) Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J Neurosci 24:8704–8710

    Article  PubMed  CAS  Google Scholar 

  • Trabace L, Kendrick KM (2000) Nitric oxide can differentially modulate striatal neurotransmitter concentrations via soluble guanylate cyclase and peroxynitrite formation. J Neurochem 75:1664–1674

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  PubMed  CAS  Google Scholar 

  • Wallmichrath I, Szabo B (2002) Cannabinoids inhibit striatonigral GABAergic neurotransmission in the mouse. Neuroscience 113:671–682

    Article  PubMed  CAS  Google Scholar 

  • Yao X (2007) TRPC, cGMP-dependent protein kinases and cytosolic Ca2+. Handb Exp Pharmacol 179:527–540

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  PubMed  CAS  Google Scholar 

  • Yung WH, Häusser MA, Jack JJ (1991) Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol 436:643–667

    PubMed  CAS  Google Scholar 

  • Zamir N, Skofitsch G, Eskay RL, Jacobowitz DM (1986) Distribution of immunoreactive atrial natriuretic peptides in the central nervous system of the rat. Brain Res 365:105–111

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Freeman AS (1994) Electrophysiological effects of cholecystokinin on neurons in rat substantia nigra pars reticulata. Brain Res 652:154–156

    Article  PubMed  CAS  Google Scholar 

  • Zhou FW, Matta SG, Zhou FM (2008) Constitutively active TRPC3 channels regulate basal ganglia output neurons. J Neurosci 28:473–482

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Sardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carletti, F., Ferraro, G., Rizzo, V. et al. Nitric oxide- and cGMP-active compounds affect the discharge of substantia nigra pars reticulata neurons: in vivo evidences in the rat. J Neural Transm 116, 539–549 (2009). https://doi.org/10.1007/s00702-009-0216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0216-y

Keywords

Navigation