Skip to main content
Log in

Relationship between floral traits and floral visitors in two coexisting Tecoma species (Bignoniaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In this paper, we studied the floral biology of Tecoma fulva ssp. garrocha and T. stans in Vaqueros (Salta, Argentina), where both species coexist. We tested the idea that floral traits are associated with the pollinator types that visit them. According to our results, T. fulva ssp. garrocha presented traits common to bird flowers and were visited by two species of Trochilidae (Colibri serrirostris and Chlorostilbon lucidus). In addition, T. stans exhibited traits common to hymenoptera flowers and were visited principally by Apis mellifera and Bombus atratus. This study showed that floral traits are predictive of animal visitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75:330–351

    Article  Google Scholar 

  • Alcantara S, Lohmann LG (2010) Evolution of floral morphology and pollination system in Bignonieae (Bignoniaceae). Am J Bot 97:782–796

    Article  Google Scholar 

  • Bianchi AR (1996) Temperaturas medias estimadas para la región noroeste de Argentina. INTA, Salta, Argentina

    Google Scholar 

  • Bianchi AR, Yañez CE (1992) Las precipitaciones en el noroeste argentino. INTA, Salta, Argentina

    Google Scholar 

  • Castellanos MC, Wilson P, Thomson JD (2004) Anti-bee and pro-bird changes during the evolution of hummingbird pollination in Penstemon flowers. J Evol Biol 17:876–885

    Article  PubMed  CAS  Google Scholar 

  • Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant–insect flower visitor webs. J Anim Ecol 71:32–43

    Article  Google Scholar 

  • Eckhart V (1992) Spatio-temporal variation in abundance and variation in foraging behavior of the pollinators of gynodioecious Phacelia linearis (Hydrophyllaceae). Oikos 64:573–586

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1971) The principles of pollination ecology. Pergamon, USA

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Ann Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fenster CB, Cheely G, Dudash MR, Reynolds RJ (2006) Nectar reward and advertisement in hummingbird-pollinated Silene virginica (Cariophyllaceae). Am J Bot 93:1080–1087

    Article  Google Scholar 

  • Freitas BM, Paxton RJ (1998) A comparison of two pollinators: the introduced honey bee Apis mellifera and an indigenous bee Centris tarsata on cashew Anacardium occidentale in its native range of NE Brazil. J Appl Ecol 35:109–121

    Article  Google Scholar 

  • Gentry AH (1974) Coevolutionary patterns in Central American Bignoniaceae. Ann Mo Bot Gard 61:259–728

    Google Scholar 

  • Goldblatt P, Nänni I, Berhardt P, Manning JC (2004) Floral biology of Hesperantha (Iridiaceae: Crocoideae): how minor shifts in floral presentation change the pollination system. Ann Mo Bot Gard 91:186–206

    Google Scholar 

  • Gómez JM (2002) Generalización en la interacciones entre plantas y polinizadores. Rev Chil Hist Nat 75:105–116

    Article  Google Scholar 

  • Gómez JM, Zamora R (1999) Generalization vs. Specialization in the pollination system of Hormathophylla spinosa (Cruciferae). Ecology 80:796–805

    Google Scholar 

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26

    Article  Google Scholar 

  • Gross CL, Mackay D (1998) Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol Conserv 86:169–178

    Article  Google Scholar 

  • Hegland SJ, Totland Ø (2005) Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecology 145:586–594

    Article  Google Scholar 

  • Herrera J (1988) Pollination relationships in southern Spanish Mediterranean shrublands. J Ecol 76:274–287

    Article  Google Scholar 

  • Herrera CM (1996) Floral traits and plant adaptation to insect pollinators: a devil’s advocate approach. In: Lloyd DG, Barrett SCH (eds) Floral biology: studies on floral evolution in animal-pollinated plants, 1st edn. Chapman & Hall, New York, pp 140–190

    Google Scholar 

  • Hingston AB, McQuillan PB (2000) Are pollination syndromes useful predictors of floral visitors in Tasmania? Austral Ecol 25:600–609

    Article  Google Scholar 

  • InfoStat (2009) InfoStat versión 2007. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Irwin RE, Brody AK (1998) Nectar robbing in Ipomopsis aggregata: effects on pollinator behaviour and plant fitness. Oecology 116:519–527

    Article  Google Scholar 

  • Irwin RE, Brody AK, Waser NM (2001) The impact of floral larceny on individuals, populations, and communities. Oecology 129:161–168

    Article  Google Scholar 

  • Johnson SD, Linder PH, Steiner KE (1998) Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am J Bot 85:402–411

    Article  Google Scholar 

  • Lázaro A, Hegland S, Totland Ø (2008) The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecology 157:249–257

    Article  Google Scholar 

  • Mayfield MM, Waser NM, Price MV (2001) Exploring the most effective pollinator principle with complex flowers: bumblebees and Ipomopsis aggregata. Ann Bot 88:591–596

    Article  Google Scholar 

  • Narosky T, Izurieta D (2003) Guía para la identificación de las aves de Argentina y Uruguay. Vázquez-Mazzini, Argentina

    Google Scholar 

  • Nicolson SW, Fleming PA (2003) Nectar as food for birds: the physiological consequences of drinking dilute sugar solutions. Plant Syst Evol 238:139–153

    Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Stella Watts, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–720

    Article  Google Scholar 

  • Ollerton J, Alarcónn R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI, Rotenberry J (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480

    Article  PubMed  Google Scholar 

  • Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ (2009) A molecular phylogeny and classification of Bignoniaceae. Am J Bot 96:1731–1743

    Article  CAS  Google Scholar 

  • Ortega-Baes P, Saravia M, Suhring S, Godínez-Alvarez H, Zamar M (2011) Reproductive biology of Echinopsis terschekii (Cactaceae): the role of nocturnal and diurnal pollinators. Plant Biol 13:33–40

    Article  PubMed  Google Scholar 

  • Pérez P, Arroyo MTK, Medel R, Hershkovitz MA (2006) Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). Am J Bot 93:1029–1038

    Article  Google Scholar 

  • Price MV, Waser NM, Irwin RE, Campbell DR, Brody AK (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86:2106–2116

    Article  Google Scholar 

  • Pyke GH, Waser NM (1981) The production of dilute nectar by hummingbird and honeyeater flowers. Biotropica 13:260–270

    Article  Google Scholar 

  • Stiles GF, Freeman CE (1993) Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25:191–205

    Article  Google Scholar 

  • Thomson JD, Wilson P, Valenzuela M (2000) Pollen presentation and pollination syndromes, with special reference to Penstemon. Plant Species Biol 15:11–29

    Article  Google Scholar 

  • Urcelay C, Morales CL, Chalcoff VR (2006) Relationship between corolla length and floral larceny in the South American hummingbird pollinated Campsidium valdivianum. Ann Bot Fenn 43:205–211

    Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Wilson P, Castellanos MC, Houge JN, Thomson JD, Armbruster SW (2004) A multivariate search for pollination syndromes among penstemons. Oikos 104:346–361

    Article  Google Scholar 

  • Wilson P, Castellanos MC, Wolfe AP, Thomson JD (2006) Shifts between bee and bird pollination in Penstemons. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization, 1st edn. The University of Chicago Press, Chicago, pp 47–69

    Google Scholar 

  • Wood JRI (2008) A revision of Tecoma Juss (Bignoniaceae) in Bolivia. Bot J Linn Soc 156:143–172

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the handling editor and the anonymous reviewers for insightful comments that have improved this manuscript. We are grateful to Silvia Sühring for reviewing the manuscript and J. Arrueta for field and laboratories assistance. N. Frizza assisted with the English version of the paper. P.O.-B. thanks CIUNSalta for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ortega-Baes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curti, R.N., Ortega-Baes, P. Relationship between floral traits and floral visitors in two coexisting Tecoma species (Bignoniaceae). Plant Syst Evol 293, 207–211 (2011). https://doi.org/10.1007/s00606-011-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0436-0

Keywords

Navigation