Skip to main content
Log in

Genetic diversity and relationships in Solanum subg. Archaesolanum (Solanaceae) based on RAPD and chloroplast PCR-RFLP analyses

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The subgenus Archaesolanum is a group composed of eight species with a characteristic chromosome number based on n = x = 23 and an area restricted to the South Pacific. This subgenus is an isolated group of Solanum for which extensive information about phylogenetic relationships based on molecular genetic methods is lacking. This study represents an approach to analyze genetic relationships within this group. In this context, seven species were examined using random amplified polymorphic DNA (RAPD) markers. In further analysis, the amplification products of two chloroplast regions (trnS-trnG and rbcL) were studied with polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) method. Screening for the presence of unique mitochondrial rearrangements was also carried out using universal mitochondrial primers for the detection of fragment length polymorphisms. We identified two major groups within the subgenus; one was composed of the members of ser. Avicularia and Laciniata, while the other was formed by species belonging to ser. Similia. It is suggested that the taxonomic status of series within the Archaesolanum clade should be revised. The hybrid origin of S. laciniatum was also tested, and two hypotheses regarding its phylogeny are assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baeza C, Schrader O, Budahn H (2007) Characterization of geographically isolated accessions in five Alstromeria L. species (Chile) using FISH of tandemly repeated DNA sequences and RAPD analysis. Plant Syst Evol 269:1–14

    Article  CAS  Google Scholar 

  • Baylis GTS (1954) Chromosome number and distribution of Solanum aviculare Forst. and S. laciniatum Ait. Trans Roy Soc N Z 82:639–643

    Google Scholar 

  • Baylis GTS (1963) A cytogenetical study of the Solanum aviculare species complex. Aust J Bot 11:168–177

    Article  Google Scholar 

  • Bitter G (1927) Solanaceae. In: Hegi G (ed) Illustrierte Flora von Mittel-Europa, vol 5, Part 4. J.F. Lehmanns, Munich, pp 2548–2625

    Google Scholar 

  • Bohs L (2005) Major clades in Solanum based on ndhF sequences. In: Keating RC, Hollowell VC, Croat TB (eds) A festschrift for William G. D’Arcy: the legacy of a taxonomist. Monographs in Systematic Botany from the Missouri Botanical Garden, vol 104. Missouri Botanical Garden Press, St. Louis, pp 27–49

    Google Scholar 

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Article  Google Scholar 

  • Bohs L, Olmstead RG (2001) A reassessment of Normania and Triguera (Solanaceae). Plant Syst Evol 228:33–48

    Article  CAS  Google Scholar 

  • Bruzdzinski CM, Gelehrter TD (1989) Determination of exon-intron structure: a novel application of the polymerase chain reaction technique. DNA 8:691–696

    CAS  PubMed  Google Scholar 

  • Bussel JD, Waycott M, Chappill JA (2005) Arbitrarily amplified DNA merkers as characters for phylogenetic inference. Perspect Plant Ecol 7:3–26

    Article  Google Scholar 

  • Cisneros PL, Quiros CF (1995) Variation and phylogeny of the triploid cultivated potato Solanum shaucha Juz. et. Buk. based on RAPD and isozyme markers. Genet Res Crop Evol 42:373–386

    Article  Google Scholar 

  • Clausen AM, Spooner DM (1998) Molecular support for the hybrid origin of the wild potato species Solanum × rechei (Solanum sect. Petota). Crop Sci 38:858–865

    Article  Google Scholar 

  • Cseh A, Taller J (2008) Genetic diversity of ragweed (Ambrosia artemisiifolia L.) a comparision of maternally inherited cpDNA and mtDNA. J Plant Dis Protect 21(Special Issue):389–394

    Google Scholar 

  • D’Arcy WG (1972) Solanaceae studies II: typification of subdivisions of Solanum. Ann Mo Bot Gard 59:262–278

    Article  Google Scholar 

  • D’Arcy WG (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry and evolution. Royal Botanic Gardens, Kew, pp 75–137

    Google Scholar 

  • Danert S (1970) Infragenerische Taxa der Gattung Solanum L. Kulturpfl 18:253–297

    Article  Google Scholar 

  • Demesure BN, Sodzi R, Petit J (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  CAS  PubMed  Google Scholar 

  • Dice LR (1945) Measuring of amount of ecological association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Divaret I, Margale E, Thomas G (1999) RAPD markers on seed bulks efficiently assess the genetic diversity of a Brassica oleracea L. collection. Theor Appl Genet 98:1029–1035

    Article  CAS  Google Scholar 

  • Downie SR, Palmer JD (1992) Using of Chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Springer, Berlin, pp 14–36

  • Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Forster JGA (1786) Dissertatio inauguralis botanico-medica de plantis esculentis insularum oceani australis. Typis Frankianus, Halle

    Google Scholar 

  • Friesen N, Borisjuk N, Mes THM, Klaas M, Hanelt P (1997) Allotetraploid origin of Allium altyncolicum (Alliaceae, Allium sect. Schoenoprasum) as investigated by karyological and molecular markers. Plant Syst Evol 206:317–335

    Article  Google Scholar 

  • Fu CH, Chen CL, Guo WW, Deng XX (2004) GISH, AFLP and PCR-RFLP analysis of an intergeneric somatic hybrid combining Goutou sour orange and Poncirus trifoliata. Plant Cell Rep 23(6):391–396

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko II (1969) Inter and intraspecific hybridisation in the genus Solanum subgenus Archaesolanum Bitter ex Marzell. Genetika 5:51–60

    Google Scholar 

  • Gerasimenko II (1970) Conspectus subgeneris Archaesolanum Bitt. Ex Marz. Generis Solanum L. Novosti Sist Vyssh Rast 7:270–275

    Google Scholar 

  • Hair JB (1966) Biosystematics of the New Zealand Flora, 1945–1964. New Zeal J Bot 4:559–595

    Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:513–525

    Article  Google Scholar 

  • Huang J, Corke H, Sun M (2002) Highly polymorphic AFLP markers as a complementary tool to ITS sequences in assessing genetic diversity and phylogenetic relationships of sweetpotato (Ipomoea batatas (L.) Lam.) and its wild relatives. Genet Res Crop Evol 49(6):541–550

    Article  Google Scholar 

  • Hunziker AT (2001) Genera Solanacearum. A. R. G. Ganter, Ruggell, pp 49–85

  • Knapp S (2006) Solanum aviculare. In: Solanaceae Source, 2008. Available via http://www.nhm.ac.uk/research-curation/projects/solanaceaesource/taxonomy/description-detail.jsp?spnumber=1213

  • Levin RA, Myers NR, Bohs L (2006) Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae) Am J Bot 93:157–169

    Article  CAS  Google Scholar 

  • Liebst B (2008) Do they really hybridize? A field study in artificially established mixed populations of Euphrasia minima and E. salsburgensis (Orobanchaceae) in the Swiss Alps. Plant Syst Evol 273:179–189

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  Google Scholar 

  • Miller JT, Spooner DM (1999) Collapse of species boundaries in the wild potato Solanum brevicaule complex (Solanaceae sect. Petota): molecular data. Plant Syst Evol 214:103–130

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Olmstead RG, Palmer JD (1997) Implications for the phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22:19–29

    Article  Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. Royal Botanic Gardens, Kew, pp 111–137

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet 6:115–120

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J Mol Evol 28(1–2):87–97

    Article  CAS  PubMed  Google Scholar 

  • Poczai P (2007) Phylogenetic analysis of infrageneric groups in the genus Solanum. MSc thesis, University of Pannonia

  • Poczai P, Taller J, Szabó I (2008) Analysis of phylogenetic relationships in the genus Solanum (Solanaceae) as revaled by RAPD markers. Plant Syst Evol 275:59–67

    Article  CAS  Google Scholar 

  • Potokina E, Tomooka N, Duncan A, Vaughan DA, Alexandrova T, Xu RQ (1999) Phylogeny of Vicia Subgenus Vicia (Fabaceae) based on analysis of RAPDs and RFLP of PCR-amplified chloroplast genes. Genet Res Crop Evol 46(2):149–161

    Article  Google Scholar 

  • Prentice HC, Malm JU, Hathaway L (2008) Chloroplast DNA variation in the European herb Silene dioica (rad campion): postglacial migration and interspecific introgression. Plant Syst Evol 272:23–37

    Article  CAS  Google Scholar 

  • Randell BR, Symon DE (1976) Chromosome numbers in Australian Solanum species. Aust J Bot 24:369–379

    Article  Google Scholar 

  • Rodríguez A, Spooner DM (1997) Chloroplast DNA analysis of Solanum bulbocastanum and S. cardiophyllum, and evidence for the distinctiveness of S. cardiophyllum subsp. ehrenbergii (sect. Petota). Syst Bot 22:31–43

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Not 6:569–572

    Article  Google Scholar 

  • Sheng HM, An LZ, Chen T, Xu SJ, Liu GX, Zheng XL, Pu LL, Liu YJ, Lian YS (2006) Analysis of the genetic diversity and relationships among and within species of Hippophae (Elaeagnaceae) based on RAPD markers. Plant Syst Evol 260:25–37

    Article  CAS  Google Scholar 

  • Spooner DM, Systma KJ (1992) Reexamination of series relationships of Mexican and Central American wild potatoes (Solanum sect. Petota): evidence from chloroplast DNA restriction site variation. Syst Bot 17:432–448

    Article  Google Scholar 

  • Spooner DM, Sytsma KJ, Conti E (1991) Chloroplast DNA evidence for genome differentiation in wild potatoes (Solanum sect. Petota: Solanaceae). Am J Bot 78:1354–1366

    Article  Google Scholar 

  • Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688

    Article  CAS  Google Scholar 

  • Spooner DM, Tivang J, Nienhuis J, Miller JT, Douches DS, Contreras MA (1995) Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potatoe). Theor Appl Genet 92:532–540

    Article  Google Scholar 

  • Spooner DM, Tivang J, Nienhuis J, Miller JT, Douches DS, Contreras MA (1996) Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potatoe). Theor Appl Genet 92(5):532–540

    Article  CAS  Google Scholar 

  • Spooner DM, Ugarte ML, Skroch PW (1997) Species boundaries and interrelationships of two closely related sympatric diploid wild potato species, Solanum astleyi and S. boliviense., based on RAPDs. Theor Appl Genet 95(5–6):764–771

    Article  Google Scholar 

  • Stedje B, Bukenya-Ziraba R (2003) RAPD variation in Solanum anguivi Lam. and S. aethiopicum L. (Solanaceae) in Uganda. Euphytica 131:283–297

    Article  Google Scholar 

  • Symon DE (1979) The genus Solanum in Australia. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of The Solanaceae. Academic Press, London, pp 125–127

  • Symon DE (1981) A revision of Solanum in Australia. J Adelaide Bot Gard 4:1–367

    Google Scholar 

  • Symon DE (1984) Solanum sect. Archaesolanum (Bitt. Ex Marzell) Danert. In: van Balgooy MMJ (ed) Pacific plant areas, vol 4. National Herbarium of the Netherlands, pp 215–245

  • Symon DE (1994) Kangaroo apples: Solanum sect. Archaesolanum. Published by the author, Keswick, South Australia

    Google Scholar 

  • Van den Berg R, Bryan G, Del Rio A, Spooner DM (2002) Reduction of species in the wild potato Solanum section Petota series Longipedicellata: AFLP, RAPD and chloroplast SSR data. Theor Appl Genet 105(8):1109–1114

    Article  Google Scholar 

  • Vincze T, Posfai J, Robers RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31(13):3688–3691

    Article  CAS  PubMed  Google Scholar 

  • Wachowiak W, Stephan BR, Schulze I, Prus-Głowacki W, Ziegenhagen B (2006) A critical evaluation of reproductive barriers between closely related species using DNA markers–a case study in Pinus. Plant Syst Evol 257:1–8

    Article  CAS  Google Scholar 

  • Walbot V, Warren C (1988) Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acid Res 18:7213–7218

    Article  CAS  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  Google Scholar 

  • Williams JGK, Hanafey MK, Rafalski JA, Tingey SV (1993) Genetic analysis using random amplified polymorphic DNA markers. Methods Enzym 218:704–740

    Article  CAS  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84(24):9054–9058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to Gerard M. van der Weerden for rapid seed transfer, to the workers of the Botanical and Experimental Garden of the Radboud University, Nijmegen, and to Linda Magyar, Kinga Mátyás, and István Cernak for their excellent assistance. This research represents a partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Plant Genetics and Biotechnology at the University of Pannonia. This work was carried out in 2007 and it was supported by the Hungarian State PhD Grant provided for the first author at the University of Pannonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Poczai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poczai, P., Cseh, A., Taller, J. et al. Genetic diversity and relationships in Solanum subg. Archaesolanum (Solanaceae) based on RAPD and chloroplast PCR-RFLP analyses. Plant Syst Evol 291, 35–47 (2011). https://doi.org/10.1007/s00606-010-0371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0371-5

Keywords

Navigation