Skip to main content
Log in

Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Correction to this article was published on 15 August 2019

This article has been updated

Abstract

This work shows that the metal organic framework (MOF) HKUST-1 of type Cu3(BTC)2 (also referred to as MOF-199; a face-centered-cubic MOF containing nanochannels) is a most viable coating for use in enantioseparation in capillary electrochromatography (CEC). A HKUST-1 modified capillary was prepared and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, elemental analysis and thermogravimetric analysis. CEC-based enantioseparation of the basic drugs propranolol (PRO), esmolol (ESM), metoprolol (MET), amlodipine (AML) and sotalol (SOT) was performed by using carboxymethyl-β-cyclodextrin as the chiral selector. Compared with a fused-silica capillary, the resolutions are improved (ESM: 1.79; MET: 1.80; PRO: 4.35; SOT: 1.91; AML: 2.65). The concentration of chiral selector, buffer pH value, applied voltage and buffer concentration were optimized, and the reproducibilities of the migration times and Rs values were evaluated.

Schematic presentation of the preparation of a HKUST-1@capillary for enantioseparation of racemic drugs. Cu(NO3)2 and 1,3,5-benzenetricarboxylic acid (BTC) were utilized to prepare the HKUST-1@capillary. Then the capillary was applied to construct capillary electrochromatography system with carboxymethyl-β-cyclodextrin (CM-β-CD) for separation of basic racemic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 15 August 2019

    The published version of this article, unfortunately, contains error. The author found out that the given name interchanged with the family name. The second author’s family name should be “Yu” and the first name should be “Tao”. Given in this article is the correct author name.

References

  1. Guihen E, Glennon JD (2004) Recent highlights in stationary phase design for open-tubular capillary electrochromatography. J Chromatogr A 1044:67–81

    Article  CAS  Google Scholar 

  2. Liu Z, Otsuka K, Terabe S (2002) Evaluation of extended light path capillary and etched capillary for use in open tubular capillary electrochromatography. J Chromatogr A 961:285–291

    Article  CAS  Google Scholar 

  3. Yang L, Guihen E, Holmes JD, Loughran M, O'Sulliva GP, Glennon JD (2005) Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Anal Chem 77:1840–1846

    Article  CAS  Google Scholar 

  4. Gong Z, Duan L, Tang A (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182:1297–1304

    Article  CAS  Google Scholar 

  5. Liu Z, Du Y, Feng Z (2018) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184:583–593

    Article  Google Scholar 

  6. Zhang Q, Du Y, Du S (2014) Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis. J Chromatogr A 1339:185–191

    Article  CAS  Google Scholar 

  7. Li L, Yang F, Wang H, Yan X (2013) Metal-organic framework poly methylmethacrylate composites for open-tubular capillary electrochromatography. J Chromatogr A 1316:97–103

    Article  CAS  Google Scholar 

  8. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  Google Scholar 

  9. Zhou H, Long J, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  10. Huang H, Lin C, Wu C, Cheng Y, Lin C (2013) Metal organicframework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Anal Chim Acta 779:96–103

    Article  CAS  Google Scholar 

  11. Li J, Sculley J (2011) Zhou H metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  Google Scholar 

  12. Yu Y, Ren Y, Shen W, Deng H, Gao Z (2013) Applications of metal-organicframeworks as stationary phases in chromatography. TrAC Trends Anal Chem 50:33–41

    Article  CAS  Google Scholar 

  13. Yang C, Yan X (2011) Metal-organic framework MIL-101 (Cr) for high-performance liquid chromatographic separation of substitutedaromatics. Anal Chem 83:7144–7150

    Article  CAS  Google Scholar 

  14. Liu S, Yang C, Wang S, Yan X (2012) Metal-organic frameworks for reverse-phase high-performance liquid chromatography. Analyst 137:816–818

    Article  CAS  Google Scholar 

  15. Yu Y, Ren Y, Shen W, Deng H, Gao Z (2013) Applications of metal-organic frame-works as stationary phases in chromatography. TrAC Trends Anal Chem 50:33–41

    Article  CAS  Google Scholar 

  16. Zhang K, Cai S, Yan Y, He Z, Lin H, Huang X, Zheng R, Fan J, Zhang W (2017) Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J Chromatogr A 1519:100–109

    Article  CAS  Google Scholar 

  17. Chen B, Liang C, Yang J, Contreras DS, Clancy YL, Lobkovsky EB, Yaghi OM, Dai S (2006) A microporous metal-organic framework forgas-chromatographic separation of alkanes. Angew Chem 118:1418–1421

    Article  Google Scholar 

  18. Ye N, Ma J, An J, Li J, Cai Z, Zong H (2016) Separation of amino acid enantiomers by a capillary modified with a metal-organic framework. RSC Adv 6:41587–41593

    Article  CAS  Google Scholar 

  19. Ma J, Ye N, Li J (2016) Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography. Electrophoresis 37:601–608

    Article  CAS  Google Scholar 

  20. Yu L, Yang C, Yan X (2014) Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 1343:188–194

    Article  CAS  Google Scholar 

  21. Tang P, Bao T, Chen Z (2016) Novel Zn-based MOFs stationary phase with large pores for capillary electrochromatography. Electrophoresis 37:2181–2189

    Article  CAS  Google Scholar 

  22. Yang S, Ye F, Lv Q, Zhang C, Shen S, Zhao S (2014) Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J Chromatogr A 1360:143–149

    Article  CAS  Google Scholar 

  23. El-Hankari S, Huo J, Ahmed A, Zhang H, Bradshaw D (2014) Surface etching of HKUST-1 promoted via supramolecular interactions for chromatography. J Mater Chem A 2:13479–13485

    Article  CAS  Google Scholar 

  24. Münch AS, Mertens FO (2012) HKUST-1 as an open metal site gas chromatographic stationary phase-capillary preparation, separation of small hydrocarbons and electron donating compounds, determination of thermodynamic data. J Mater Chem 22:10228–10234

    Article  Google Scholar 

  25. Ahmed A, Forster M, Clowes R, Bradshaw D, Myers P, Zhang H (2013) Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. J Mater Chem A 1:3276–3286

    Article  CAS  Google Scholar 

  26. Bao T, Zhang J, Zhang W, Chen Z (2015) Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A 1381:239–246

    Article  CAS  Google Scholar 

  27. Prestipino C, Regli L, Vitillo J, Bonino F, Damin A, Lamberti C, Zecchina A, Solari P, Kongshaug K, Bordiga S (2006) Local structure of framework cu(II) in HKUST-1metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18:1337–1346

    Article  CAS  Google Scholar 

  28. Biemmi E, Scherb C, Bein T (2007) Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized self-assembled mono-layers. J Am Chem Soc 129:8054–8055

    Article  CAS  Google Scholar 

  29. Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sterne-mann C, Evers F, Zacher D, Fischer RA (2007) Step-by-step route for the synthesis ofmetal-organic frameworks. J Am Chem Soc 129:15118–15119

    Article  CAS  Google Scholar 

  30. Xu Y, Lv W, Ren C, Niu X, Chen H, Chen X (2017) In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. J Chromatogr A 1532:223–231

    Article  Google Scholar 

  31. Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Xu H (2017) A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Microchem Acta 6149:1–8

    Google Scholar 

  32. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315

    Article  CAS  Google Scholar 

  33. Buschmann HJ, Knittel D, Schollmeyer E (2001) New textile applications of cyclodextrins. J Incl Phenom Macro 40:169–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Program No.: BK20141353).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Tao or Yingxiang Du.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Tao, Y., Du, Y. et al. Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim Acta 186, 462 (2019). https://doi.org/10.1007/s00604-019-3584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3584-5

Keywords

Navigation