Skip to main content
Log in

Preparation of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This paper presents a method for the preparation of a graphene-based hybrid composite film by electrodeposition of reduced graphene oxide and overoxidized electropolymerized polypyrrole onto a glassy carbon electrode (GCE) using cyclic voltammetry. The morphology of the hybrid composite film was characterized by scanning electron microscopy. The electrochemical activity of the modified GCE was studied by cyclic voltammetry using the negatively charged redox probe Fe(CN)63− and the positively charged redox probe Ru(NH3)63+. The modified GCE displays excellent electrocatalytic activity for dopamine (DA) and uric acid (UA), but electrostatically repulses ascorbate anion under physiological pH conditions. The voltammetric response to DA is linear in the 2.0 μM to 160 μM concentration range even in the presence of 1.0 mM ascorbic acid and 0.1 mM of UA. The detection limit is 0.5 μM. The amperometric response to DA (best measured at 0.22 V vs. Ag/AgCl) extends from 0.4 μM to 517 μM and has a 0.2 μM detection limit.

Schematic presentation of the fabrication of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, Parkkinen L, Senior SL, Anwar S, Ryan B, Deltheil T, Kosillo P, Cioroch M, Wagner K, Ansorge O, Bannerman DM, Bolam JP, Magill PJ, Cragg SJ, Wade-Martins R (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110:E4016–E4025

    Article  CAS  Google Scholar 

  2. Bucher ES, Wightman RM (2015) Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem 8:239–261

    Article  CAS  Google Scholar 

  3. Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L (2017) In vivo analysis with electrochemical sensors and biosensors. Anal Chem 89:300–313

    Article  CAS  Google Scholar 

  4. Zhang D, Li L, Ma W, Chen X, Zhang Y (2017) Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mat Sci Eng C-Mater 70:241–249

    Article  CAS  Google Scholar 

  5. Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin AAM, Şen F (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine and ascorbic acid. Mat Sci Eng C-Mater 99:284–254

    Article  Google Scholar 

  6. Tavakolian E, Tashkhourian J (2018) Sonication-assisted preparation of a nanocomposite consisting of reduced graphene oxide and CdSe quantum dots, and its application to simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 185:456–463

    Article  Google Scholar 

  7. Li Y, Jiang Y, Song Y, Li Y, Li S (2018) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta 185:382–391

    Article  Google Scholar 

  8. Kepinska D, Blanchard GJ, Krysinski P, Stolarski J, Kijewska K, Mazur M (2011) Pyrene-loaded polypyrrole microvessels. Langmuir 27:12720–12729

    Article  CAS  Google Scholar 

  9. Schuhmann W (1995) Electron-transfer pathways in amperometric biosensors. Ferrocenemodified enzymes entrapped in conducting-polymer layers. Biosens Bioelectron 10:181–193

    Article  CAS  Google Scholar 

  10. Kim J-H, Sharma AK, Lee Y-S (2006) Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater Lett 60:1697–1701

    Article  CAS  Google Scholar 

  11. Diaz AF, Kanazaw KK (1979) Electrochemical polymerization of pyrrole. Chem Commun 14:635–636

    Article  Google Scholar 

  12. Beck F, Braun P, Oberst M (1987) Organic electrochemistry in the solid state-overoxidation of polypyrrole. Ber Bunsenges Phys Chem 91:967–974

    Article  CAS  Google Scholar 

  13. Witkowski A, Freund MS, Brajter-Toth A (1991) Effect of electrode substrate on the morphology and selectivity of overoxidized polypyrrole films. Anal Chem 63:622–626

    Article  CAS  Google Scholar 

  14. Witkowski A, Brajter-Toth A (1992) Overoxidized polypyrrole films: a model for the design of permselective electrodes. Anal Chem 64:635–641

    Article  CAS  Google Scholar 

  15. Freund M, Eodalbhai L, Brajter-Toth A (1991) Anion excluding polypyrrole films. Talanta 38:95–99

    Article  CAS  Google Scholar 

  16. Pihel K, Walker QD, Wightman RM (1996) Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. Anal Chem 68:2084–2089

    Article  CAS  Google Scholar 

  17. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438

    Article  CAS  Google Scholar 

  18. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  19. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188

    Article  CAS  Google Scholar 

  20. Su Z, Xu X, Cheng Y, Tan Y, Xiao L, Tang D, Jiang H, Qin X, Wang H (2019) Chemical pre-reduction and electro-reduction guided preparation of a porous graphene bionanocomposite for indole-3-acetic acid detection. Nanoscale 11:962–967

    Article  CAS  Google Scholar 

  21. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  22. Zhang D, Ouyang X, Ma W, Li L, Zhang Y (2016) Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode. Electroanalysis 28:312–319

    Article  CAS  Google Scholar 

  23. Wang J, Jiang M (2000) Toward genolelectronics: nucleic acid doped conducting polymers. Langmuir 16:2269–2274

    Article  CAS  Google Scholar 

  24. Tiwari I, Gupta M, Pandey CM, Mishra V (2015) Gold nanoparticle decorated graphene sheet-polypyrrole based nanocomposite: its synthesis, characterization and genosensing application. Dalton Trans 44:15557–15566

    Article  CAS  Google Scholar 

  25. Daniel Arulraj A, Arunkumar A, Vijayan M, Balaji Viswanath K, Vasantha VS (2016) A simple route to develop highly porous nano polypyrrole/reduced graphene oxide composite film for selective determination of dopamine. Electrochim Acta 206:77–85

    Article  Google Scholar 

  26. Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010

    Article  CAS  Google Scholar 

  27. Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306

    Article  CAS  Google Scholar 

  28. Zhang D, Fu L, Liao L, Dai B, Zou R, Zhang C (2012) Electrochemically functional graphene nanostructure and layer-by-layer nanocomposite incorporating adsorption of electroactive methylene blue. Electrochim Acta 75:71–79

    Article  CAS  Google Scholar 

  29. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369

    Article  CAS  Google Scholar 

  30. Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B 186:380–387

    Article  CAS  Google Scholar 

  31. Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191

    Article  CAS  Google Scholar 

  32. Li J, Yang J, Yang Z, Li Y, Yu S, Xua Q, Hu X (2012) Graphene-au nanoparticles nanocomposite film for selective electrochemical determination of dopamine determination of dopamine. Anal Methods 4:1725–1728

    Article  CAS  Google Scholar 

  33. Mathew G, Dey P, Das R, Chowdhury SD, Paul Das M, Veluswamy P, Neppolian B, Das J (2018) Direct electrochemical reduction of hematite decorated graphene oxide (alpha-Fe2O3@erGO) nanocomposite for selective detection of Parkinson's disease biomarker. Biosens Bioelectron 115:53–60

    Article  CAS  Google Scholar 

  34. Zhang C, Ren J, Zhou J, Cui M, Li N, Han B, Chen Q (2018) Facile fabrication of a 3,4,9,10-perylene tetracarboxylic acid functionalized graphene-multiwalled carbon nanotube-gold nanoparticle nanocomposite for highly sensitive and selective electrochemical detection of dopamine. Analyst 143:3075–3084

    Article  CAS  Google Scholar 

  35. Mir TA, Akhtar MH, Gurudatt NG, Kim JI, Choi CS, Shim YB (2015) An amperometric nanobiosensor for the selective detection of K(+)-induced dopamine released from living cells. Biosens Bioelectron 68:421–428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21305106) and Shaanxi Province Natural Science Foundation of China (No.2019JM-469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, D., Ma, W. et al. Preparation of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid. Microchim Acta 186, 407 (2019). https://doi.org/10.1007/s00604-019-3518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3518-2

Keywords

Navigation