Skip to main content
Log in

Label-free immunosensing of microcystin-LR using a gold electrode modified with gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The hepatotoxic microcystins, especially microcystin–LR (MC–LR), are causing serious problems to public health and fisheries. We describe here a label-free amperometric immunosensor for rapid determination of MC–LR in water sample. The sensor was prepared by immobilizing antibody on a gold electrode coated with L-cysteine-modified gold nanoparticles. The stepwise self-assembly of the immunosensor was monitored and characterized by means of electrochemical impedance spectroscopy and differential pulse voltammetry. A 0.60 mmol L−1 solution of hydroquinone was used as the electron mediator. The immunosensor was incubated with MC–LR at 25 °C for 20 min, upon which the differential pulse voltammetric current changed linearly over the concentration range from 0.05 to 15.00 μg L−1, with a detection limit of 20 ng L−1. The developed biosensor was used to determine MC–LR in spiked crude algae samples. The recovery was in the range from 95.6 to 105%. This method is simple, economical and efficient, this making it potentially suitable for field analysis of MC-LR in crude algae and water samples.

The present investigation combines SAM monolayer with gold nanoparticles monolayer to prepare a stable film to immobilize the antibody, and takes hydroquinone as electron mediator, establishes a miniature, economic, compatible and label-free amperometric immunosensor for the quick detection of MC-LR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Falconer I, Bartram J, Chorus I, Kuiper-Goodman T, Utkilen H, Burch M, Codd GA (1999) In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, p 155

    Google Scholar 

  2. Gupta N, Pant SC, Vijayaraghavan R, Rao PVL (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:285

    Article  CAS  Google Scholar 

  3. World Health Organization (WHO) (1998) Guidelines for drinking water quality, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  4. Meriluoto J (1997) Chromatography of microcystins. Anal Chim Acta 352:277

    Article  CAS  Google Scholar 

  5. Kotak BG, Kenefick SL, Fritz DL, Rousseaux CG, Prepas EE, Hrudey SE (1993) Occurrence and toxicological evaluation of cyanobacterial toxins in Alberta lakes and farm dugouts. Water Res 27:495

    Article  CAS  Google Scholar 

  6. Metcalf JS, Hyenstrand P, Beattie KA, Codd GA (2000) Effects of physicochemical variables and cyanobacterial extracts on the immunoassay of microcystin-LR by two ELISA kits. J Appl Microbiol 89:532

    Article  CAS  Google Scholar 

  7. An J, Carmichael WW (1994) Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 32:1495

    Article  CAS  Google Scholar 

  8. Mathysa W, Surholta B (2004) Analysis of microcystins in freshwater samples using high performance liquid chromatography and an enzyme–linked immunosorbent assay. J Hyg Environ Health 207:601

    Article  Google Scholar 

  9. Tong P, Zhang L, He Y, Tang S, Cheng J, Chen G (2010) Analysis of microcystins by capillary zone electrophoresis coupling with electrospray ionization mass spectrometry. Talanta 82:1101

    Article  CAS  Google Scholar 

  10. Zeisbergerova M, Kostal V, Sramkova M, Babica P, Blaha L, Glatz Z, Kahle V (2006) Separation of microcystins by capillary electrochromatography in monolithic columns. J Chromatogr B 841:140

    Article  CAS  Google Scholar 

  11. Frias HV, Mendes MA, Cardozo KHM, Carvalho VM, Tomazela D, Colepicolo P, Pinto E (2006) Use of electrospray tandem mass spectrometry for identification of microcystins during a cyanobacterial bloom event. Biochem Biophys Res Commun 344:741

    Article  CAS  Google Scholar 

  12. Tang D, Xia B (2008) Electrochemical immunosensor and biochemical analysis for carcinoembryonic antigen in clinical diagnosis. Microchim Acta 163:41

    Article  CAS  Google Scholar 

  13. Zhang L, Liu Y, Chen T (2009) Label-free amperometric immunosensor based on antibody immobilized on a positively charged gold nanoparticle/L-cysteine-modified gold electrode. Microchim Acta 164:161

    Article  CAS  Google Scholar 

  14. Lv P, Min L, Yuan R, Chai Y, Chen S (2010) A novel immunosensor for carcinoembryonic antigen based on poly (diallyldimethylammonium chloride) protected prussian blue nanoparticles and double-layer nanometer-sized gold particles. Microchim Acta 171:297

    Article  CAS  Google Scholar 

  15. Tang D, Tang J, Su B, Chen H, Huang J, Chen G (2010) Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles. Microchim Acta 171:457

    Article  CAS  Google Scholar 

  16. Campas M, Marty JL (2007) Highly sensitive amperometric immunosensors for microcystin detection in algae. Biosens Bioelectron 22:1034

    Article  CAS  Google Scholar 

  17. Zhang FH, Yang SH, Kang TY, Cha GS, Nam H, Meyerhoff ME (2007) A rapid competitive binding nonseparation electrochemical enzyme immunoassay (NEEIA) test strip for microcystin-LR (MC-LR) determination. Biosens Bioelectron 22:1419

    Article  CAS  Google Scholar 

  18. Zhang J, Lei J, Xu C, Ding L, Ju H (2010) Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal Chem 82:1117

    Article  CAS  Google Scholar 

  19. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1

    Article  CAS  Google Scholar 

  20. Wu S, Zhong Z, Wang D, Li M, Qing Y, Dai N, Li Z (2009) Gold nanoparticle-labeled detection antibodies for use in an enhanced electrochemical immunoassay of hepatitis B surface antigen in human serum. Microchim Acta 166:269

    Article  CAS  Google Scholar 

  21. Mena ML, Yanez-Sedeno P, Pingarron JM (2005) A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes. Anal Biochem 336:20

    Article  CAS  Google Scholar 

  22. Wu Y, Hu S (2006) Voltammetric investigation of cytochrome c on gold coated with a self–assembled glutathione monolayer. Bioelectrochemistry 68:105

    Article  CAS  Google Scholar 

  23. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  24. Stricks W, Kolthoff IM (1951) Polarographic investigations of reactions in aqueous solutions containing copper and cysteine (Cystine). I. Cuprous copper and cysteine in ammoniacal medium. The dissociation constant of cuprous cysteinate. J Am Chem Soc 73:1723

    Article  CAS  Google Scholar 

  25. Tudos AJ, Johnson DC (1995) Dissolution of gold electrodes in alkaline media containing cysteine. Anal Chem 67:557

    Article  CAS  Google Scholar 

  26. Yang WR, Gooding JJ, Hibbert DB (2001) Characterisation of gold electrodes modified with self-assembled monolayers of L–cysteine for the adsorptive stripping analysis of copper. J Electroanal Chem 516:10

    Article  CAS  Google Scholar 

  27. Long F, He M, Zhu A, Shi H (2009) Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples. Biosens Bioelectron 24:2346

    Article  CAS  Google Scholar 

  28. Long F, Shi H, He M, Sheng J, Wang J (2009) Sensitive and rapid chemiluminescence enzyme immunoassay for microcystin-LR in water samples. Anal Chim Acta 649:123

    Article  CAS  Google Scholar 

  29. Xia Y, Deng J, Jiang L (2010) Simple and highly sensitive detection of hepatotoxin microcystin-LR via colorimetric variation based on polydiacetylene vesicles. Sens Actuators B-Chem 145:713

    Article  Google Scholar 

  30. Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron 24:78

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the National Nature Sciences Foundation of China (20735002, 20877019, 21075016, 40940026), National Basic Research Program of China (2010CB732403), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (708056), the Nature Sciences Funding of Fujian Province (2009J1028, 2008J0228), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, P., Tang, S., He, Y. et al. Label-free immunosensing of microcystin-LR using a gold electrode modified with gold nanoparticles. Microchim Acta 173, 299–305 (2011). https://doi.org/10.1007/s00604-011-0557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0557-8

Keywords

Navigation