Skip to main content
Log in

Thermal Volume Changes and Creep in the Callovo-Oxfordian Claystone

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The Callovo-Oxfordian (COx) claystone is considered as a potential host rock for high-level radioactive waste disposal at great depth in France. Given the exothermic nature of radioactive wastes, a temperature elevation planned to be smaller than 100 °C will affect the host rock around the disposal cells. To gain better understanding of the thermal volumetric response of the COx claystone, a new thermal isotropic compression cell was developed with particular attention devoted to monitoring axial and radial strains. To do so, a high-precision LVDTs system ensuring direct contact between the LVDT stem and the claystone sample through the membrane was developed. A short drainage length (10 mm) was also ensured so as to allow full saturation of the sample under stress conditions close to in situ, and fully drained conditions during compression. High-precision strain monitoring allowed to observe a volumetric creep under stress conditions close to in situ. A drained heating test under constant stress carried out afterwards up to 80 °C exhibited a thermoelastic expansion up to a temperature of 48 °C, followed by thermoplastic contraction at higher temperature. Creep volume changes, that appeared to be enhanced by temperature, were modelled by using a simple Kelvin–Voigt model, so as to estimate the instantaneous response of the COx claystone and to determine its thermal expansion coefficient. The temperature at which the transition between thermal expansion and contraction appeared is close to the maximum burial temperature of the Callovo-Oxfordian claystone, estimated at 50 °C. This is in agreement with what has been already observed on the Opalinus Clay by Monfared et al. (2012) that was interpreted as a thermal hardening phenomenon, showing that the material kept the memory of the highest temperature supported during its geological history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abuel-Naga HM, Bergado DT, Bouazza A (2007) Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng Geol 89:144–154

    Article  Google Scholar 

  • Andra (2005) Synthesis argile: evaluation of the feasibility of a geological repository in argillaceous formation. http://www.andra.fr/download/site-principal/document/editions/266.pdf

  • Armand G, Noiret A, Zghondi J, Seyedi DM (2013) Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne Underground Research Laboratory. J Rock Mech Geotech Eng 5:221–230

    Article  Google Scholar 

  • Armand G, Conil N, Talandier J, Seyedi DM (2016) Fundamental aspects of the hydromechanical behaviour of Callovo-Oxfordian claystone: from experimental studies to model calibration and validation. Comput Geotech. doi:10.1016/j.compgeo.2016.06.003

    Google Scholar 

  • Auvray C (2004) Thermomechanical tests on Opalinus Clays of the Mont Terri, ANDRA Report C.RP.OENG.04–0239

  • Baldi G, Hueckel T, Pellegrini R (1988) Thermal volume changes of the mineral-water system in low-porosity clay soils. Can Geotech J 25:807–825

    Article  Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S et al (2017) Poroelasticity of the Callovo-Oxfordian claystone. Rock Mech Rock Eng 50:871–889. doi:10.1007/s00603-016-1137-3

    Article  Google Scholar 

  • Blaise T, Barbarand J, Kars M, Ploquin F, Aubourg C, Brigaud B, Cathelineau M, El Albani A, Gautheron C, Izart A, Janots D, Michels R, Pagel M, Pozzi J-P, Boiro MC, Landrein P (2014) Reconstruction of low temperature (<100 °C) burial in sedimentary basins: a comparison of geothermometer in the intracontinental Paris Basin. Mar Pet Geol 53:71–87

    Article  Google Scholar 

  • Charlier R, Collin F, Pardoen B, Talandier J, Radu J-P, Gerard P (2013) An unsaturated hydro-mechanical modelling of two in situ experiments in Callovo-Oxfordian argillite. Eng Geol 165:46–63

    Article  Google Scholar 

  • Davy CA, Skoczylas F, Barnichon J-D, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth Parts A/B/C 32:667–680

    Article  Google Scholar 

  • Delage P (2013) On the thermal impact on the excavation damaged zone around deep radioactive waste disposal. J Rock Mech Geotech Eng 5:179–190

    Article  Google Scholar 

  • Delage P, Le T-T, Tang A-M, Li X-L (2007) Suction effects in deep Boom clay block samples. Géotechnique 57:239–244

    Article  Google Scholar 

  • Delage P, Menaceur H, Tang A-M, Talandier J (2014) Suction effects in deep Callovo-Oxfordian claystone. Geotech Lett 3:84–88

    Google Scholar 

  • Ewy RT (2015) Shale/claystone response to air and liquid exposure, and implications for handling, sampling and testing. Int J Rock Mech Min Sci 80:388–401

    Google Scholar 

  • Fabre G, Pellet F (2006) Creep and time-dependent damage in argillaceous rocks. Int J Rock Mech Min Sci 43:950–960. doi:10.1016/j.ijrmms.2006.02.004

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Thomas JA (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington DC, pp 29–44

    Chapter  Google Scholar 

  • Gasc-Barbier M, Chanchole S, Bérest P (2004) Creep behavior of Bure clayey rock. Appl Clay Sci 26:449–458. doi:10.1016/j.clay.2003.12.030

    Article  Google Scholar 

  • Gaucher E, Robelin C, Matray J-M, Négrel G, Gros Y, Heitz J-F, Vinsot A, Rebours H, Cassagnabère A, Bouchet A (2004) ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling. Phys Chem Earth 29:55–77

    Article  Google Scholar 

  • Gens A, Vaunat J, Garitte B, Wileveau Y (2007) In situ behaviour of a stiff layered clay subject to thermal loading : observations and interpretation. Géotechnique 57:207–228

    Article  Google Scholar 

  • Ghabezloo S, Sulem J (2009) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42:1–24

    Article  Google Scholar 

  • Ghabezloo S, Sulem J, Guédon S, Martineau F, Saint-Marc J (2008) Poromechanical behaviour of hardened cement paste under isotropic loading. Cem Concr Res 38:1424–1437

    Article  Google Scholar 

  • Ghabezloo S, Sulem J, Saint-Marc J (2009) Evaluation of a permeability-porosity relationship in a low-permeability creeping material using a single transient test. Int J Rock Mech Min Sci 46:761–768

    Article  Google Scholar 

  • Guayacán-Carrillo LM, Sulem J, Seyedi DM, Ghabezloo S, Noiret A, Armand G (2016) Analysis of long-term anisotropic convergence in drifts excavated in Callovo-Oxfordian claystone. Rock Mech Rock Eng 49(1):97–114

    Article  Google Scholar 

  • Hohner M, Bossart P (1998) Geological, mineralogical, geochemical, geomechanical and hydraulic parameters of Opalinus Clay derived by in situ and laboratory experiments, Mont Terri Technical Note 98-49

  • Hu DW, Zhang F, Shao JF (2014) Experimental study of poromechanical behavior of saturated claystone under triaxial compression. Acta Geotech 9:207–214. doi:10.1007/s11440-013-0259-y

    Article  Google Scholar 

  • Hueckel T, Baldi G (1990) Thermoplasticity of saturated clays: experimental constitutive study. J Geotech Eng ASCE 116:1778–1796

    Article  Google Scholar 

  • Hueckel T, Borsetto M (1990) Thermoplasticity of saturated soils and shales: constitutive equations. J Geotech Eng ASCE 116(12):1765–1777

    Article  Google Scholar 

  • Hueckel T, Pellegrini R (1992) Effective stress and water pressure in saturated clays during heating-cooling cycles. Can Geotech J 29:1095–1102

    Article  Google Scholar 

  • Liu ZB, Xie SY, Shao JF, Conil N (2015) Effects of deviatoric stress and structural anisotropy on compressive creep behavior of a clayey rock. Appl Clay Sci 114:491–496. doi:10.1016/j.clay.2015.06.039

    Article  Google Scholar 

  • McTigue DF (1986) Thermoelastic response of fluid-saturated porous rock. J Geophys Res 91:9533–9542

    Article  Google Scholar 

  • Menaceur H, Delage P, Tang A-M, Conil N (2015) The thermo-mechanical behaviour of the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci 78:290–303. doi:10.1016/j.ijrmms.2015.07.002

    Google Scholar 

  • Menaceur H, Delage P, Tang A-M, Conil N (2016a) On the thermo-hydro-mechanical behaviour of a sheared callovo-oxfordian claystone sample with respect to the EDZ behaviour. Rock Mech Rock Eng 49:1875–1888. doi:10.1007/s00603-015-0897-5

    Article  Google Scholar 

  • Menaceur H, Delage P, Tang AM, Talandier J (2016b) The Status of Water in Swelling Shales: An Insight from the Water Retention Properties of the Callovo-Oxfordian Claystone. Rock Mech Rock Eng 49:4571–4586. doi:10.1007/s00603-016-1065-2

    Article  Google Scholar 

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang A-M, Gatmiri B (2012) A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci 52:112–121

    Article  Google Scholar 

  • Mohajerani M, Delage P, Sulem J, Monfared M, Tang A-M, Gatmiri B (2013) The thermal volume changes of the Callovo-Oxfordian claystone. Rock Mech Rock Eng 47:131–142

    Article  Google Scholar 

  • Monfared M, Delage P, Sulem J, Mohajerani M, Tang A-M, De Laure E (2011a) A new hollow cylinder triaxial cell to study the behaviour of geo-materials with low permeability. Int J Rock Mech Min Sci 48:637–649

    Article  Google Scholar 

  • Monfared M, Sulem J, Delage P, Mohajerani M (2011b) A laboratory investigation on thermal properties of the Opalinus claystone. Rock Mech Rock Eng 44:735–747

    Article  Google Scholar 

  • Monfared M, Sulem J, Delage P, Mohajerani M (2012) On the THM behaviour of a sheared Boom clay sample: application to the behaviour and sealing properties of the EDZ. Eng Geol 124:47–58

    Article  Google Scholar 

  • Mügler C, Filippi M, Montarnal P, Montarnal Ph, Martinez J-M, Wileveau Y (2006) Determination of the thermal conductivity of opalinus clay via simulations of experiments performed at the Mont Terri underground laboratory. J Appl Geophys 58:112–129. doi:10.1016/j.jappgeo.2005.05.002

    Article  Google Scholar 

  • Muñoz J, Alonso EE, Lloret A (2009) Thermo-hydraulic characterisation of soft rock by means of heating pulse tests. Géotechnique 59:293–306

    Article  Google Scholar 

  • Palciauskas V, Domenico PA (1982) Characterization of drained and undrained response of thermally loaded repository rocks. Water Resour Res 18:281–290

    Article  Google Scholar 

  • Pardoen B, Collin F (2016) Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystone. Comput Geotech. doi:10.1016/j.compgeo.2016.05.017

    Google Scholar 

  • Pham QT, Vales F, Malinsky L, Nguyen M-D, Gharbi H (2007) Effects of desaturation–resaturation on mudstone. Phys Chem Earth Parts A/B/C 32:646–655

    Article  Google Scholar 

  • Sarout J, Molez L, Guéguen Y, Hoteit N (2007) Shale dynamic properties and anisotropy under triaxial loading: experimental and theoretical investigations. Phys Chem Earth Parts A/B/C 32:896–906

    Article  Google Scholar 

  • Shao JF, Zhu QZ, Su K (2003) Modeling of creep in rock materials in terms of material degradation. Comput Geotech 30(7):549–555

    Article  Google Scholar 

  • Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43(4):582–592

    Article  Google Scholar 

  • Spang B (2002) Excel add-in for properties of water and steam in SI units. http://www.cheresources.com/iapwsif97.shtml

  • Sultan N, Delage P, Cui Y (2002) Temperature effects on the volume change behaviour of Boom clay. Eng Geol 64:135–145

    Article  Google Scholar 

  • Tang A-M, Cui Y-J, Barnel N (2008) Thermo-mechanical behaviour of a compacted swelling clay. Géotechnique 58:45–54

    Article  Google Scholar 

  • Vu M-H, Sulem J, Ghabezloo S, Laudet J-B, Garnier A, Guédon S (2012) Time-dependent behaviour of hardened cement paste under isotropic loading. Cem Concr Res 42:789–797. doi:10.1016/j.cemconres.2012.03.002

    Article  Google Scholar 

  • Wan M, Delage P, Tang A-M, Talandier J (2013) Water retention properties of the Callovo-Oxfordian claystone. Int J Rock Mech Min Sci 64:96–104

    Google Scholar 

  • Wileveau Y, Cornet FH, Desroches J, Blumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32:866–878

    Article  Google Scholar 

  • Wu B, Tan CP, Aoki T (1997) Specially designed techniques for conducting consolidated undrained triaxial tests on low permeability shales. Int J Rock Mech Min Sci 34:336.1–336.14. doi:10.1016/S1365-1609(97)00168-8

    Google Scholar 

  • Zhang CL (2011) Experimental evidence for self-sealing of fractures in claystone. Phys Chem Earth 36:1972–1980

    Article  Google Scholar 

  • Zhang CL, Czaikowski O, Rothfuchs T (2010) Thermo-hydro-mechanical behaviour of the Callovo-Oxfordian clay rock. Rep GRS, 266

Download references

Acknowledgements

The authors are grateful to Andra (the French agency for the management of radioactive wastes) and Ecole des Ponts ParisTech for the support of the PhD thesis of the first author and for fruitful discussions. Andra is also thanked for providing the specimens tested in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Belmokhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmokhtar, M., Delage, P., Ghabezloo, S. et al. Thermal Volume Changes and Creep in the Callovo-Oxfordian Claystone. Rock Mech Rock Eng 50, 2297–2309 (2017). https://doi.org/10.1007/s00603-017-1238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1238-7

Keywords

Navigation