Skip to main content
Log in

Numerical Modelling of a Low-Energy Rockfall Barrier: New Insight into the Bullet Effect

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the dynamic response of low energy, semi-rigid rockfall barriers. The study is based on a FE model that reproduces the geometry, components and connections of the existing systems that were previously tested at The University of Newcastle. The mechanical behaviour of the relevant barrier components was calibrated from simple mechanical tests and the response of the assembled system, i.e. 2 m high, 15 m long rockfall barrier, was validated against of full-scale tests results. Following a satisfactory validation of the model, further dynamic non-linear analyses were conducted to investigate the dependence of the full system performance to the size of impacting blocks. Interestingly, the total failure energy was found to evolve non-monotonically with block size because of dynamic effects that seem to prevail for impact speeds in the range of 15–20 m/s. The study also highlights the complex effects of adding intermediate longitudinal cables to the system. An improvement of the barrier performance is observed for the large blocks but the bullet effect is exacerbated for small blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abaqus (2011) Abaqus Analysis User’s Manual. Version 6.11. Dassault Systémes Simulia Corp, Providence, RI

  • Austroads (2010) Guide to Road Design Part 3: Geometric Design No. AGRD03/10, 295 pages

  • Bertrand D, Nicot F, Gotteland P, Lambert S (2008) Discrete element method (DEM) numerical modeling of double-twisted hexagonal mesh. Can Geotech J 45(8):1104–1111. doi:10.1139/T08-036

    Article  Google Scholar 

  • Bertrand D, Trad A, Limam A, Silvani C (2012) Full-scale dynamic analysis of an innovative rockfall fence under impact using the Discrete Element Method: from the local scale to the structure scale. Rock Mech Rock Eng 45(5):885–900. doi:10.1007/s00603-012-0222-5

    Google Scholar 

  • Bigot C, Berger F, Lambert S (2010) Treenet: an innovative type of rockfall protection fence on forested slopes specially designed for low energy events. In: Interpraevent 2010, International Symposium in Pacific Rim, Taipei (TWN), pp 366–371

  • Boetticher A, Volkwein A, Wendeler C (2010) Numerical modelling of new rockfall interception nets. EGU Gen Assem 12(EGU2010-13754):2010

    Google Scholar 

  • Bourrier F, Bigot C, Bertrand D, Lambert S, Berger F (2010) A numerical model for the design of low energy rockfall protection nets. In: 3rd Euro mediterranean symposium on advances in geomaterials and structures (AGS2010), pp 407–412

  • Bourrier F, Lambert S, Baroth J (2014) A reliability-based approach for the design of rockfall protection fences. Rock Mech Rock Eng 48(1):247–259. doi:10.1007/s00603-013-0540-2

    Article  Google Scholar 

  • Buzzi O, Spadari M, Giacomini A, Fityus S, Sloan SW (2013) Experimental testing of rockfall barriers designed for the low range of impact energy. Rock Mech Rock Eng 46(4):701–712. doi:10.1007/s00603-012-0295-1

    Article  Google Scholar 

  • Buzzi O, Leonarduzzi E, Krummenacher B, Volkwein A, Giacomini A (2015) Performance of high strength rockfall mesh: effect of block size and mesh geometry. Rock Mech Rock 48(3):1221–1231. doi:10.1007/s00603-014-0640-7

    Article  Google Scholar 

  • Cantarelli G, Giani GP, Gottardi G, Govoni L (2008) Modelling rockfall protection fences. 1st World landslide forum, Tokyo, vol 18–21. ICL, Tokyo, pp 103–108

    Google Scholar 

  • Castro-Fresno D, del Coz Diaz JJ, Lopez LA, Garcia Nieto PJ (2008) Evaluation of the resistant capacity of cable nets using the finite element method and experimental validation. Eng Geol 100:1–10. doi:10.1016/j.enggeo.2008.02.007

    Article  Google Scholar 

  • Cazzani A, Mongiovì L, Frenez T (2002) Dynamic finite element analysis of interceptive devices for falling rocks. Int J Rock Mech Min Sci 39(3):303–321. doi:10.1016/S1365-1609(02)00037-0

    Article  Google Scholar 

  • de Miranda S, Gentilini C, Gottardi G, Govoni L, Mentani A, Ubertini F (2015) Virtual testing of existing semi-rigid rockfall protection barriers. Eng Struct 85:83–94. doi:10.1016/j.engstruct.2014.12.022

    Article  Google Scholar 

  • Descoeudres F (1997) Aspects geomecaniques des instabilites de falaises rocheuses et des chutes de blocs. Societe Suisse de mecanique des sols et des roches 135:3–11

    Google Scholar 

  • Dhakal S, Bhandary NP, Yatabe R, Kinoshita N (2011) Experimental, numerical and analytical modelling of a newly developed rockfall protective cable-net structure. Nat Hazards Earth Syst Sci 11:3197–3212. doi:10.5194/nhess-11-3197-2011

    Article  Google Scholar 

  • DISTART (2006) Certificato n. 571/06/01. Technical Report. University of Bologna

  • EOTA (2008) Guideline for European technical approval of falling rock protection kits (ETAG 027), Brussels

  • Escallon JP, Wendeler C, Chatzi E, Bartelt P (2014) Parameter identification of rockfall protection barrier components through an inverse formulation. Eng Struct 77:1–16. doi:10.1016/j.engstruct.2014.07.019

    Article  Google Scholar 

  • Gentilini C, Govoni L, de Miranda S, Gottardi G, Ubertini F (2012) Three-dimensional numerical modelling of falling rock protection barriers. Comput Geotech 44:58–72. doi:10.1016/j.compgeo.2012.03.011

    Article  Google Scholar 

  • Gentilini C, Gottardi L, Govoni L, Mentani A, Ubertini F (2013) Design of falling rock protection barriers using numerical models. Eng Struct 50:96–106. doi:10.1016/j.engstruct.2012.07.008

    Article  Google Scholar 

  • Gottardi G, Govoni L (2010) Full-scale modelling of falling rock protection barriers. Rock Mech Rock Eng 43:261–274. doi:10.1007/s00603-009-0046-0

    Article  Google Scholar 

  • Govoni L, de Miranda S, Gentilini C, Gottardi G, Ubertini F (2011) Modelling of falling rock protection barriers. Int J Phys Modell Geotech 11(4):126–137

    Article  Google Scholar 

  • Grassl H, Volkwein A, Bartelt P (2003) Experimental and numerical modelling of higly flexible rockfall protection barriers. In: Proceedings of 12th Panamerican conference on soil mechanics and geotechnical engineering. Cambridge, pp 2589–2594

  • Hambleton J, Buzzi O, Giacomini A, Spadari M, Sloan SW (2013) Perforation of flexible rockfall barriers by normal block impact. Rock Mech Rock Eng 46(3):515–526. doi:10.1007/s00603-012-0343-x

    Article  Google Scholar 

  • Hearn G, Barrett RK, Henson HH (1995) Testing and modelling of two rockfall barriers. Transp Res Rec 1504:1–11

    Google Scholar 

  • Kane WF, Duffy JD (1993) Brugg low energy wire rope rockfall net field tests. Technical Research Report 93-01. Department of Civil Engineering, The University of the Pacific

  • Lambert S, Bertrand D, Berger F, Bigot C (2009) Low energy rock-fall protection fences in forested areas: experiments and numerical modelling. In: International conference on structures under shock and impact (SUSI Congress 2009), pp 133–138

  • Muraishi H, Samizo M, Sugiyama T (2005) Development of a flexible low energy rockfall protection fence. Q Rep RTRI 46(3):161–166

    Article  Google Scholar 

  • Peila D, Pelizza S, Sassudelli F (1998) Evaluation of rockfall restraining nets by full scale tests. Rock Mech Rock Eng 31(1):1–24

    Article  Google Scholar 

  • Peila D, Oggeri C, Baratono P (2006) Barriere paramassi a rete. Interventi e dimensionamento. Quaderni di studio e di documentazione—26. Associazione Georisorse ed Ambiente, Torino (in Italian)

  • Sasiharan N, Muhunthan B, Badger TC, Shu S, Carradine DM (2006) Numerical analysis of the performance of wire mesh and cable net rockfall protection systems. Eng Geol 88:121–132. doi:10.1016/j.enggeo.2006.09.005

    Article  Google Scholar 

  • Spadari M, Giacomini A, Buzzi O, Fityus S, Giani GP (2012a) In situ rockfall testing in New South Wales, Australia. Int J Rock Mech Min Sci 49:84–93. doi:10.1016/j.ijrmms.2011.11.013

    Article  Google Scholar 

  • Spadari M, Giacomini A, Buzzi O, Hambleton J (2012b) Prediction of the bullet effect for rockfall barriers: a scaling approach. Rock Mech Rock Eng 45(2):131–144. doi:10.1007/s00603-011-0203-0

    Article  Google Scholar 

  • Spadari M, Kardani M, De Carteret R, Giacomini A, Buzzi O, Fityus S, Sloan SW (2013) Statistical evaluation of rockfall energy ranges for different geological settings of New South Wales, Australia. Eng Geol 158:57–65. doi:10.1016/j.enggeo.2013.03.007

    Article  Google Scholar 

  • Thoeni K, Lambert C, Giacomini A, Sloan SW (2013) Discrete modelling of hexagonal wire meshes with a stochastically distorted contact model. Comp Geotech 49:158–169. doi:10.1016/j.compgeo.2012.10.014

    Article  Google Scholar 

  • Van Tran P, Maegawa K, Fukada S (2013) Experiments and dynamic finite element analysis of a wire-rope rockfall protective fence. Rock Mech Rock Eng 46:1183–1198. doi:10.1007/s00603-012-0340-0

    Article  Google Scholar 

  • Volkwein A, Roth A, Gerber W, Vogel A (2009) Flexible rockfall barriers subjected to extreme loads. Struct Eng Int 19(3):327–332. doi:10.2749/101686609788957900

    Article  Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterization and structural protection—a review. Nat Hazards Earth Syst Sci 11:2617–2651. doi:10.5194/nhess-11-2617-2011

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Faculty of Engineering and Built Environment for its financial contribution towards the visits of Prof. Gottardi and Mr. Mentani (Pilot Grant G1400972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mentani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentani, A., Giacomini, A., Buzzi, O. et al. Numerical Modelling of a Low-Energy Rockfall Barrier: New Insight into the Bullet Effect. Rock Mech Rock Eng 49, 1247–1262 (2016). https://doi.org/10.1007/s00603-015-0803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0803-1

Keywords

Navigation