Skip to main content
Log in

Two-Nucleon Scattering Without Partial Waves Using a Momentum Space Argonne V18 Interaction

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We test the operator form of the Fourier transform of the Argonne V18 potential by computing selected scattering observables and all Wolfenstein parameters for a variety of energies. These are compared to the GW-DAC database and to partial wave calculations. We represent the interaction and transition operators as expansions in a spin-momentum basis. In this representation the Lippmann–Schwinger equation becomes a six channel integral equation in two variables. Our calculations use different numbers of spin-momentum basis elements to represent the on- and off-shell transition operators. This is because different numbers of independent spin-momentum basis elements are required to expand the on- and off-shell transition operators. The choice of on and off-shell spin-momentum basis elements is made so that the coefficients of the on-shell spin-momentum basis vectors are simply related to the corresponding off-shell coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiringa R.B., Stoks V.G.J., Schiavilla R.: An accurate nucleon–nucleon potential with charge independence breaking. Phys. Rev. C51, 38 (1995). doi:10.1103/PhysRevC.51.38

    ADS  Google Scholar 

  2. Machleidt R.: The high-precision, charge-dependent Bonn nucleon–nucleon potential (Cd-Bonn). Phys. Rev. C63, 024001 (2001). doi:10.1103/PhysRevC.63.024001

    ADS  Google Scholar 

  3. Stoks V., Klomp R., Terheggen C., Swart J.: Construction of high quality NN potential models. Phys. Rev. C49, 2950 (1994). doi:10.1103/PhysRevC.49.2950

    ADS  Google Scholar 

  4. Epelbaum E., Glockle W., Meissner U.G.: The two-nucleon system at next-to-next-to-next-to-leading order. Nucl. Phys. A747, 362 (2005). doi:10.1016/j.nuclphysa.2004.09.107

    Article  ADS  Google Scholar 

  5. Entem D.R., Machleidt R.: Accurate charge-dependent nucleon–nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C68, 041001 (2003). doi:10.1103/PhysRevC.68.041001

    ADS  Google Scholar 

  6. Gloeckle W., Witala H., Huber D., Kamada H., Golak J.: The Three nucleon continuum: achievements, challenges and applications. Phys. Rept. 274, 107 (1996). doi:10.1016/0370-1573(95)00085-2

    Article  ADS  Google Scholar 

  7. Linm T., Elster C., Polyzou W.N., Witala H., Glockle W.: Poincaré invariant three-body scattering at intermediate energies. Phys. Rev. C78, 024002 (2008). doi:10.1103/PhysRevC.78.024002

    ADS  Google Scholar 

  8. Lin T., Elster C., Polyzou W.N., Glockle W.: Relativistic effects in exclusive pd breakup scattering at intermediate energies. Phys. Lett. B660, 345 (2008). doi:10.1016/j.physletb.2008.01.012

    Article  ADS  Google Scholar 

  9. Veerasamy S., Polyzou W.N.: A momentum-space Argonne V18 interaction. Phys. Rev. C84, 034003 (2011)

    ADS  Google Scholar 

  10. Veerasamy, S.: Solution of two nucleon systems using vector variables in momentum space—an innovative approach. Doctoral Dissertation, University of Iowa (2011). http://ir.uiowa.edu/etd/1099/

  11. Fachruddin I., Elster C., Gloeckle W.: Nucleon–nucleon scattering in a three dimensional approach. Phys. Rev. C62, 044002 (2000). doi:10.1103/PhysRevC.62.044002

    ADS  Google Scholar 

  12. Ramalho G., Arriaga A., Pena M.T.: Solution of the spectator equation for relativistic NN scattering without partial wave expansion. Few Body Syst. 39, 123 (2006). doi:10.1007/s00601-006-0161-3

    Article  ADS  Google Scholar 

  13. Golak J., Glockle W., Skibinski R., Witala H., Rozpedzik D. et al.: The two-nucleon system in three dimensions. Phys. Rev. C81, 034006 (2010). doi:10.1103/PhysRevC.81.034006

    ADS  Google Scholar 

  14. Wolfenstein L., Ashkin J.: Invariance conditions on the scattering amplitudes for spin-1/2 particles. Phys. Rev. 85, 947 (1952)

    Article  ADS  MATH  Google Scholar 

  15. Wolfenstein L.: Possible triple scattering experiments. Phys. Rev. 96, 1654 (1954)

    Article  ADS  MATH  Google Scholar 

  16. Sloan I.: Improvement by iteration for compact operator equations. Math. Comp. 30, 758 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keister B.D., Polyzou W.N.: Quantitative relativistic effects in the three-nucleon problem. Phys. Rev. C73, 014005 (2006). doi:10.1103/PhysRevC.73.014005

    ADS  Google Scholar 

  18. Reed, M., Simon, B. Methods of modern mathematical physics. In: Functional Analysis, vol. I. Academic Press, New York (1972)

  19. Gloeckle W.: The Quantum Mechanical Few-Body Problem. Springer, Berlin (1983)

    Book  Google Scholar 

  20. Weppner S., Elster C., Huber D.: Off-shell structures of nucleon–nucleon T-matrices and their influence on nucleon–nucleus elastic scattering observables. Phys. Rev. C57, 1378 (1998). doi:10.1103/PhysRevC.57.1378

    ADS  Google Scholar 

  21. Arndt R., Briscoe W., Strakovsky I., Workman R.: Updated analysis of NN elastic scattering to 3-GeV. Phys. Rev. C76, 025209 (2007)

    ADS  Google Scholar 

  22. Arndt R., Briscoe W., Laptev A., Strakovsky I., Workman R.: Absolute total np and pp cross section determinations. Nucl. Sci. Eng. 162, 312 (2009)

    Google Scholar 

  23. Crespo R., Moro A.M.: Tensor representation of the nucleon–nucleon amplitude. Phys. Rev. C65, 054001 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Elster.

Additional information

Dedicated to Professor Henryk Witał a at the Occasion of his 60th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veerasamy, S., Elster, C. & Polyzou, W.N. Two-Nucleon Scattering Without Partial Waves Using a Momentum Space Argonne V18 Interaction. Few-Body Syst 54, 2207–2225 (2013). https://doi.org/10.1007/s00601-012-0476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-012-0476-1

Keywords

Navigation