Skip to main content

Advertisement

Log in

Sphingosine-1-phosphate/sphingosine kinase 1-dependent lymph node metastasis in esophageal squamous cell carcinoma

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

To establish whether Sphingosine-1-phosphate (S1P) and sphingosine kinase 1 (SphK1) contribute to lymph node metastasis in esophageal squamous cell carcinoma.

Methods

Immunohistochemical analysis of SphK1 expression was performed using a tissue microarray containing 177 thoracic squamous cell esophageal cancer specimens resected at surgery, to investigate the association between intratumoral SphK1 expression and lymph node metastasis. Serum S1P levels and intratumoral SphK1 mRNA and protein expression were also evaluated in mice with vs. mice without lymph node metastasis in a murine lymph node metastasis model.

Results

Among 177 esophageal cancer patients, 127 (72%) were defined as being SphK1-positive. In univariate and multivariate analyses, SphK1 expression status was a significant factor contributing to lymph node metastasis and poorer 5-year overall survival. In the murine lymph node metastasis model, there was no difference in tumor volume or weight between the lymph node metastasis-negative and lymph node metastasis-positive groups. However, levels of SphK1 mRNA and protein and serum S1P levels were all much higher in the metastasis-positive group.

Conclusions

S1P/SphK1 may be novel targets for inhibiting lymph node metastasis in esophageal squamous cell carcinoma, and may provide the basis for a therapeutic strategy to suppress lymph node metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christiansen A, Detmar M. Lymphangiogenesis and cancer. Genes Cancer. 2011;2:1146–58.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Karaman S, Detmar M. Mechanisms of lymphatic metastasis. J Clin Invest. 2014;124:922–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motoyama S, Ishiyama K, Maruyama K, Okuyama M, Sato Y, Hayashi K, et al. Preoperative mapping of lymphatic drainage from the tumor using ferumoxide-enhanced magnetic resonance imaging in clinical submucosal thoracic squamous cell esophageal cancer. Surgery. 2007;141:736–47.

    Article  PubMed  Google Scholar 

  4. Murakami G, Abe M, Abe T. Last-intercalated node and direct lymphatic drainage into the thoracic duct from the thoracoabdominal viscera. Jpn J Thorac Cardiovasc Surg. 2002;50:93–103.

    Article  PubMed  Google Scholar 

  5. Matsubara T, Ueda M, Kaisaki S, Kuroda J, Uchida C, Kokudo N, et al. Location of initial lymph node metastasis from carcinoma of the thoracic esophagus. Cancer. 2000;89:1869–73.

    Article  CAS  PubMed  Google Scholar 

  6. Matsubara T, Ueda M, Abe T, Akimori T, Kokudo N, Takahashi T. Unique distribution patterns of metastatic lymph nodes in patients with superficial carcinoma of the thoracic oesophagus. Br J Surg. 1999;86:669–73.

    Article  CAS  PubMed  Google Scholar 

  7. Katayama H, Kurokawa Y, Nakamura K, Ito H, Kanemitsu Y, Masuda N, et al. Extended Clavien-Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg Today. 2016;46:668–85.

    Article  PubMed  Google Scholar 

  8. Ojima T, Nakamori M, Nakamura M, Katsuda M, Hayata K, Nakamura Y, et al. Expression of BRCA1, a factor closely associated with relapse-free survival, in patients who underwent neoadjuvant chemotherapy with docetaxel, cisplatin, and fluorouracil for squamous cell carcinoma of the esophagus. Surg Today. 2017;47:65–73.

    Article  CAS  PubMed  Google Scholar 

  9. Sundar SS, Ganesan TS. Role of lymphangiogenesis in cancer. J Clin Oncol. 2007;25:4298–307.

    Article  CAS  PubMed  Google Scholar 

  10. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140:460–76.

    Article  CAS  PubMed  Google Scholar 

  11. Takabe K, Paugh SW, Milstien S, Spiegel S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev. 2008;60:181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takabe K, Spiegel S. Export of sphingosine-1-phosphate and cancer progression. J Lipid Res. 2014;55:1839–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S. Targeting SphK1 as a new strategy against cancer. Curr Drug Targets. 2008;9:662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gault CR, Obeid LM. Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy. Crit Rev Biochem Mol Biol. 2011;46:342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, et al. DNA damage response and sphingolipid signaling in liver diseases. Surg Today. 2016;46:995–1005.

    Article  CAS  PubMed  Google Scholar 

  16. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res. 2012;72:726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Wang X, Bullock AJ, Callea M, Shah H, Song J, et al. Anti-S1P antibody as a novel therapeutic strategy for VEGFR TKI-resistant renal cancer. Clin Cancer Res. 2015;21:1925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP, et al. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:1185–91.

    CAS  PubMed  Google Scholar 

  19. Sato Y, Motoyama S, Nanjo H, Ito S, Yoshino K, Sasaki T, et al. REG1A expression status suggests chemosensitivity among advanced thoracic esophageal squamous cell carcinoma patients treated with esophagectomy followed by adjuvant chemotherapy. Ann Surg Oncol. 2013;20:3044–51.

    Article  PubMed  Google Scholar 

  20. Matsumoto G, Yajima N, Saito H, Nakagami H, Omi Y, Lee U, et al. Cold shock domain protein A (CSDA) overexpression inhibits tumor growth and lymph node metastasis in a mouse model of squamous cell carcinoma. Clin Exp Metastasis. 2010;27:539–47.

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki T, Motoyama S, Sato Y, Yoshino K, Matsumoto G, Minamiya Y, et al. C-reactive protein inhibits lymphangiogenesis and resultant lymph node metastasis of squamous cell carcinoma in mice. Surgery. 2013;154:1087–92.

    Article  PubMed  Google Scholar 

  22. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001;20:672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7:192–8.

    Article  CAS  PubMed  Google Scholar 

  24. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001;7:186–91.

    Article  CAS  PubMed  Google Scholar 

  25. Holopainen T, Saharinen P, D’Amico G, Lampinen A, Eklund L, Sormunen R, et al. Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst. 2012;104:461–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood. 2005;105:4649–56.

    Article  CAS  PubMed  Google Scholar 

  27. Cao R, Björndahl MA, Religa P, Clasper S, Garvin S, Galter D, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell. 2004;6:333–45.

    Article  CAS  PubMed  Google Scholar 

  28. Björndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, et al. Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci U S A. 2005;102:15593–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cao R, Björndahl MA, Gallego MI, Chen S, Religa P, Hansen AJ, et al. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood. 2006;107:3531–6.

    Article  CAS  PubMed  Google Scholar 

  30. Yoon CM, Hong BS, Moon HG, Lim S, Suh PG, Kim YK, et al. Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood. 2008;112:1129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anelli V, Gault CR, Snider AJ, Obeid LM. Role of sphingosine kinase-1 in paracrine/transcellular angiogenesis and lymphangiogenesis in vitro. FASEB J. 2010;24:2727–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, et al. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med. 2012;4:761–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J, et al. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J. 2009;23:405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan J, Tao YF, Zhou Z, Cao BR, Wu SY, Zhang YL, et al. An novel role of sphingosine kinase-1 (SPHK1) in the invasion and metastasis of esophageal carcinoma. J Transl Med. 2011. doi:10.1186/1479-5876-9-157.

    Google Scholar 

  35. Shirai K, Kaneshiro T, Wada M, Furuya H, Bielawski J, Hannun YA, et al. A role of sphingosine kinase 1 in head and neck carcinogenesis. Cancer Prev Res (Phila). 2011;4:454–62.

    Article  CAS  Google Scholar 

  36. Hazar-Rethinam M, de Long LM, Gannon OM, Topkas E, Boros S, Vargas AC, et al. A novel E2F/sphingosine kinase 1 axis regulates anthracycline response in squamous cell carcinoma. Clin Cancer Res. 2015;21:417–27.

    Article  CAS  PubMed  Google Scholar 

  37. Sinha UK, Schorn VJ, Hochstim C, Chinn SB, Zhu S, Masood R. Increased radiation sensitivity of head and neck squamous cell carcinoma with sphingosine kinase 1 inhibition. Head Neck. 2011;33:178–88.

    Article  PubMed  Google Scholar 

  38. French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 2003;63:5962–9.

    CAS  PubMed  Google Scholar 

  39. Ruckhäberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, et al. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat. 2008;112:41–52.

    Article  PubMed  Google Scholar 

  40. Liu SQ, Su YJ, Qin MB, Mao YB, Huang JA, Tang GD. Sphingosine kinase 1 promotes tumor progression and confers malignancy phenotypes of colon cancer by regulating the focal adhesion kinase pathway and adhesion molecules. Int J Oncol. 2013;42:617–26.

    Article  CAS  PubMed  Google Scholar 

  41. Rosa R, Marciano R, Malapelle U, Formisano L, Nappi L, D’Amato C, et al. Sphingosine kinase 1 overexpression contributes to cetuximab resistance in human colorectal cancer models. Clin Cancer Res. 2013;19:138–47.

    Article  CAS  PubMed  Google Scholar 

  42. Song L, Xiong H, Li J, Liao W, Wang L, Wu J, et al. Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-κB pathway in human non-small cell lung cancer. Clin Cancer Res. 2011;17:1839–49.

    Article  CAS  PubMed  Google Scholar 

  43. Malavaud B, Pchejetski D, Mazerolles C, de Paiva GR, Calvet C, Doumerc N, et al. Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. Eur J Cancer. 2010;46:3417–24.

    Article  CAS  PubMed  Google Scholar 

  44. Kim HS, Yoon G, Ryu JY, Cho YJ, Choi JJ, Lee YY, et al. Sphingosine kinase 1 is a reliable prognostic factor and a novel therapeutic target for uterine cervical cancer. Oncotarget. 2015;6:26746–56.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Camp RL, Neumeister V, Rimm DL. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol. 2008;26:5630–7.

    Article  PubMed  Google Scholar 

  46. Camp RL, Charette LA, Rimm DL. Validation of tissue microarray technology in breast carcinoma. Lab Invest. 2000;80:1943–9.

    Article  CAS  PubMed  Google Scholar 

  47. Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Ko¨chli OR, et al. Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol. 2001;159:2249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moreno-Smith M, Lutgendorf SK, Sood AK. Impact of stress on cancer metastasis. Future Oncol. 2010;6:1863–81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC, et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell. 2013;23:107–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Motoyama.

Ethics declarations

Conflict of interest

We declare no conflicts of interest in association with the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakita, Y., Motoyama, S., Sato, Y. et al. Sphingosine-1-phosphate/sphingosine kinase 1-dependent lymph node metastasis in esophageal squamous cell carcinoma. Surg Today 47, 1312–1320 (2017). https://doi.org/10.1007/s00595-017-1514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-017-1514-x

Keywords

Navigation