Skip to main content

Advertisement

Log in

Does intrawound application of vancomycin influence bone healing in spinal surgery?

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Surgical site infections represent a major complication of spinal surgery. The application of lyophilised vancomycin into the wound is reported to significantly decrease infection rates. As concentrations applied locally can exceed the minimal bacterial inhibitory concentration for more than a 1000-fold, toxic side effects on local tissue may be possible.

Methods

Primary osteoblast cell cultures were generated from bone tissue samples of 10 patients. Samples were incubated in absence or presence of either 3, 6 or 12 mg/cm2 vancomycin according to a planned phase I clinical trial protocol. Changes in pH, osteoblast migration, proliferation and viability were analysed. Alkaline phosphatase as well as mineralisation patterns was studied.

Results

The application of more than 3 mg/cm2 vancomycin induced a decline of pH. The migration potential of osteoblasts was decreased from 100 % (control samples) to zero (12 mg/cm2 vancomycin) in a dose-dependant manner. Cell proliferation was significantly inhibited at dosages above 3 mg/cm2. Significant cell death was observed if the dosage applied exceeded 6 mg/cm2. The synthesis of alkaline phosphatase was markedly reduced in all dosages applied and calcium deposition was significantly decreased in dosages above 3 mg/cm2.

Conclusion

As bone remodelling requires the immigration, proliferation and differentiation of osteoblasts at the fusion site, high dosages of intrawound vancomycin might interfere with regenerative processes and increase the risk of non-union. To allow an appropriate balance of infection risk and the risk of non-union, the minimal local concentration required should be determined by controlled in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Neill KR, Smith JG, Abtahi AM et al (2011) Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J 11:641–646. doi:10.1016/j.spinee.2011.04.025

    Article  PubMed  Google Scholar 

  2. Schuster JM, Rechtine G, Norvell DC, Dettori JR (2010) The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine (Phila Pa 1976) 35:S125–S137. doi:10.1097/BRS.0b013e3181d8342c

    Article  Google Scholar 

  3. Fang A, Hu SS, Endres N, Bradford DS (2005) Risk factors for infection after spinal surgery. Spine (Phila Pa 1976) 30:1460–1465

    Article  Google Scholar 

  4. Olsen MA, Nepple JJ, Riew KD et al (2008) Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Jt Surg Am 90:62–69. doi:10.2106/JBJS.F.01515

    Article  Google Scholar 

  5. Borkhuu B, Borowski A, Shah SA et al (2008) Antibiotic-loaded allograft decreases the rate of acute deep wound infection after spinal fusion in cerebral palsy. Spine (Phila Pa 1976) 33:2300–2304. doi:10.1097/BRS.0b013e31818786ff

    Article  Google Scholar 

  6. Li Y, Glotzbecker M, Hedequist D (2012) Surgical site infection after pediatric spinal deformity surgery. Curr Rev Musculoskelet Med. doi:10.1007/s12178-012-9111-5

    PubMed  PubMed Central  Google Scholar 

  7. Caroom C, Tullar JM, Benton EG et al (2013) Intrawound vancomycin powder reduces surgical site infections in posterior cervical fusion. Spine (Phila Pa 1976) 38:1183–1187. doi:10.1097/BRS.0b013e31828fcfb5

    Article  Google Scholar 

  8. Pahys JM, Pahys JR, Cho SK et al (2013) Methods to decrease postoperative infections following posterior cervical spine surgery. J Bone Jt Surg Am 95:549–554. doi:10.2106/JBJS.K.00756

    Article  Google Scholar 

  9. Gans I, Dormans JP, Spiegel DA et al (2013) Adjunctive vancomycin powder in pediatric spine surgery is safe. Spine (Phila Pa 1976) 38:1703–1707. doi:10.1097/BRS.0b013e31829e05d3

    Article  Google Scholar 

  10. Molinari RW, Khera OA, Molinari WJ (2012) Prophylactic intraoperative powdered vancomycin and postoperative deep spinal wound infection: 1,512 consecutive surgical cases over a 6-year period. Eur Spine J 21(Suppl 4):S476–S482. doi:10.1007/s00586-011-2104-z

    Article  PubMed  Google Scholar 

  11. Sweet FA, Roh M, Sliva C (2011) Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine (Phila Pa 1976) 36:2084–2088. doi:10.1097/BRS.0b013e3181ff2cb1

    Article  Google Scholar 

  12. Godil SS, Parker SL, O’Neill KR et al (2013) Comparative effectiveness and cost-benefit analysis of local application of vancomycin powder in posterior spinal fusion for spine trauma: clinical article. J Neurosurg Spine 19:331–335. doi:10.3171/2013.6.SPINE121105

    Article  PubMed  Google Scholar 

  13. Mariappan R, Manninen P, Massicotte EM, Bhatia A (2013) Circulatory collapse after topical application of vancomycin powder during spine surgery. J Neurosurg Spine 19:381–383. doi:10.3171/2013.6.SPINE1311

    Article  PubMed  Google Scholar 

  14. Sweet F, Sliva C, Roh M (2009) Intra-wound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions. Spine J 9:5S. doi:10.1016/j.spinee.2009.08.014

    Article  Google Scholar 

  15. Soriano A, Marco F, Martínez JA et al (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46:193–200. doi:10.1086/524667

    Article  CAS  PubMed  Google Scholar 

  16. Dose escalation trial of intrasite vancomycin pharmacokinetics—full text view—clinicaltrials.gov. http://clinicaltrials.gov/show/NCT01764750. Accessed 18 Mar 2015

  17. Chakkalakal DA, Mashoof AA, Novak J et al (1994) Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 28:1439–1443. doi:10.1002/jbm.820281209

    Article  CAS  PubMed  Google Scholar 

  18. Lee G-H, Hwang J-D, Choi J-Y et al (2011) An acidic pH environment increases cell death and pro-inflammatory cytokine release in osteoblasts: the involvement of BAX inhibitor-1. Int J Biochem Cell Biol 43:1305–1317. doi:10.1016/j.biocel.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  19. Vacanti CA, Pietrzak WS (2008) Musculoskeletal tissue regeneration: biological materials and methods (Google eBook). p 670

  20. Golub EE, Harrison G, Taylor AG et al (1992) The role of alkaline phosphatase in cartilage mineralization. Bone Miner 17:273–278

    Article  CAS  PubMed  Google Scholar 

  21. Wang S (2011) Antibiotic-impregnated cement temporary spacer for surgical treatment of osteomyelitis and nonunion of bone caused by intramedullary nailing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 25:972–975

    PubMed  Google Scholar 

  22. Shyam AK, Sancheti PK, Patel SK et al (2009) Use of antibiotic cement-impregnated intramedullary nail in treatment of infected non-union of long bones. Indian J Orthop 43:396–402. doi:10.4103/0019-5413.55468

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murray WR (1984) Use of antibiotic-containing bone cement. Clin Orthop Relat Res 89–95

  24. Cui L, Iwamoto A, Lian JQ et al (2006) Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50(2):428–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bourgeois-Nicolaos N, Massias L, Couson B et al (2007) Dose dependance of emergence of resistance to linezolid in Enterococcus faecalis in vivo. J Infect Dis 195:1480–1488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs P. Gludovatz, M.Sc. (pharm) for providing the vancomycin used in our experiments, Mrs Julia Hahne, M. Sc. for statistical advice, Mrs Maria Gusenbauer and the staff from the central sterilisation unit for the great cooperation and Mr. P. Pleininger for IT-support. We would also like to thank Mr. Erwin Falkner for monitoring GLP compliance of experimental documentation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Eder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eder, C., Schenk, S., Trifinopoulos, J. et al. Does intrawound application of vancomycin influence bone healing in spinal surgery?. Eur Spine J 25, 1021–1028 (2016). https://doi.org/10.1007/s00586-015-3943-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3943-9

Keywords

Navigation