Skip to main content
Log in

Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

For posterior spinal stabilization, loosening of pedicle screws at the bone-screw interface is a clinical complication, especially in the osteoporotic population. Axial pullout testing is the standard pre-clinical testing method for new screw designs although it has questioned clinical relevance. The aim of this study was to determine the fixation strength of three current osteoporotic fixation techniques and to investigate whether or not pullout testing results can directly relate to those of the more physiologic fatigue testing.

Methods

Thirty-nine osteoporotic, human lumbar vertebrae were instrumented with pedicle screws according to four treatment groups: (1) screw only (control), (2) prefilled augmentation, (3) screw injected augmentation, and (4) unaugmented screws with an increased diameter. Toggle testing was first performed on one pedicle, using a cranial-caudal sinusoidal, cyclic (1.0 Hz) fatigue loading applied at the screw head. The initial compressive forces ranged from 25 to 75 N. Peak force increased stepwise by 25 N every 250 cycles until a 5.4-mm screw head displacement. The contralateral screw then underwent pure axial pullout (5 mm/min).

Results

When compared to the control group, screw injected augmentation increased fatigue force (27 %, p = 0.045) while prefilled augmentation reduced fatigue force (−7 %, p = 0.73). Both augmentation techniques increased pullout force compared to the control (ps < 0.04). Increasing the screw diameter by 1 mm increased pullout force (24 %, p = 0.19), fatigue force (5 %, p = 0.73), and induced the least stiffness loss (−29 %) from control.

Conclusions

For the osteoporotic spine, screw injected augmentation showed the best biomechanical stability. Although pullout testing was more sensitive, the differences observed were not reflected in the more physiological fatigue testing, thus casting further doubt on the clinical relevance of pullout testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gaines RW (2000) The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am 82-A:1458–1476

    PubMed  Google Scholar 

  2. Cho W, Cho SK, Wu C (2010) The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg Br 92:1061–1065. doi:10.1302/0301-620X.92B8.24237

    Article  PubMed  CAS  Google Scholar 

  3. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB (1999) Complications associated with pedicle screws. J Bone Joint Surg Am 81:1519–1528

    PubMed  CAS  Google Scholar 

  4. Yahiro MA (1994) Comprehensive literature review. Pedicle screw fixation devices. Spine 19:2274S–2278S

    Article  PubMed  CAS  Google Scholar 

  5. Yuan HA, Garfin SR, Dickman CA, Mardjetko SM (1994) A historical cohort study of pedicle screw fixation in thoracic, lumbar, and sacral spinal fusion. Spine 19:2279S–2296S

    Article  PubMed  CAS  Google Scholar 

  6. Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS III, Cook SD (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19:2415–2420

    Article  PubMed  CAS  Google Scholar 

  7. Soshi S, Shiba R, Kondo H, Murota K (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16:1335–1341

    Article  PubMed  CAS  Google Scholar 

  8. Goost H, Kabir K, Wirtz DC, Deborre C, Karius T, Pflugmacher R, Koch EMW, Burger C, Fölsch C (2012) PMMA augmentation of pedicle screws: results of a survey in Germany. Z Orthop Unfall 150:318–323. doi:10.1055/s-0031-1298371

    PubMed  CAS  Google Scholar 

  9. Choma TJ, Pfeiffer FM, Swope RW, Hirner JP (2012) Pedicle screw design and cement augmentation in osteoporotic vertebrae: effects of fenestrations and cement viscosity on fixation and extraction. Spine 37:E1628–E1632

    Article  PubMed  Google Scholar 

  10. Kiner DW, Wybo CD, Sterba W, Yeni YN, Bartol SW, Vaidya R (2008) Biomechanical analysis of different techniques in revision spinal instrumentation: larger diameter screws versus cement augmentation. Spine 33:2618

    Article  PubMed  Google Scholar 

  11. Dawson JM, Boschert P, Macenski M, Rand N (2003) Clinical relevance of pull-out strength testing of pedicle screws. ASTM Spec Tech Publ 1431:68–80

    Google Scholar 

  12. ASTM (2013) F543 standard specification and test methods for metallic medical bone screws. doi:10.1520/F0543

  13. Esses SI, Sachs BL, Dreyzin V (1993) Complications associated with the technique of pedicle screw fixation a selected survey of ABS members. Spine 18:2231

    Article  PubMed  CAS  Google Scholar 

  14. Lee TC (1995) Complications of transpedicular reduction and stabilization of the thoracolumbar spine. J Formos Med Assoc 94:738–741

    PubMed  CAS  Google Scholar 

  15. Ohlin A, Karlsson M, Düppe H, Hasserius R, Redlund-Johnell I (1994) Complications after transpedicular stabilization of the spine: a survivorship analysis of 163 cases. Spine 19:2774–2779

    Article  PubMed  CAS  Google Scholar 

  16. Choma TJ, Frevert WF, Carson WL, Waters NP, Pfeiffer FM (2011) Biomechanical analysis of pedicle screws in osteoporotic bone with bioactive cement augmentation using simulated in vivo multicomponent loading. Spine 36:454–462. doi:10.1097/BRS.0b013e3181d449ec

    Article  PubMed  Google Scholar 

  17. Burval DJ, McLain RF, Milks R, Inceoglu S (2007) Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine 32:1077–1083

    Article  PubMed  Google Scholar 

  18. Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N, Ogon M, Redl H (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17:1462–1469. doi:10.1007/s00586-008-0769-8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Wittenberg RH, Lee KS, Shea M, White AA, Hayes WC (1993) Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res 296:278–287

    PubMed  Google Scholar 

  20. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res 203:99–112

    PubMed  Google Scholar 

  21. Bullmann V, Schmoelz W, Richter M, Grathwohl C, Schulte TL (2010) Revision of cannulated and perforated cement-augmented pedicle screws: a biomechanical study in human cadavers. Spine 35:E932–E939

    Article  PubMed  Google Scholar 

  22. Seebeck J, Lill C, Morlock M, Schneider E (1999) Implantatverankerung in osteoporotischem Knochen mittels monokortikaler Schrauben. Trauma Berufskrankheit 1:411–414

    Article  Google Scholar 

  23. Stadelmann VA, Bretton E, Terrier A, Procter P, Pioletti DP (2010) Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence of cortical fixation. J Biomech 43:2869–2874. doi:10.1016/j.jbiomech.2010.07.025

    Article  PubMed  Google Scholar 

  24. Bergmann G, Berlin C-U (2008) OrthoLoad. Charite-Universitaetsmedizin Berlin, http://www.OrthoLoad.com

  25. Rohlmann A, Bergmann G, Graichen F (1997) Loads on an internal spinal fixation device during walking. J Biomech 30:41–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

EU funding from the Marie Curie Action- SpineFX (238690), the State of Hamburg, screws from Ulrich medical® and cement from TECRES medical® are kindly acknowledged. A special thank you to Kay Sellenschloh and Matthias Vollmer who helped make the study run and to Nick Bishop, Milan Niebuhr and Lea Voigt for their invaluable contributions.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Kueny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kueny, R.A., Kolb, J.P., Lehmann, W. et al. Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J 23, 2196–2202 (2014). https://doi.org/10.1007/s00586-014-3476-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3476-7

Keywords

Navigation