Skip to main content

Advertisement

Log in

Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The immature disc nucleus pulposus (NP) consists of notochordal cells (NCs). With maturation NCs disappear in humans, to be replaced by chondrocyte-like mature NP cells (MNPCs); this change in cell phenotype coincidences with early signs of disc degeneration. The reasons for NC disappearance are important to understand disc degeneration, but remain unknown, yet. This study investigated, whether loading induced a change from a notochordal nucleus phenotype to a chondrocyte-like one. An in vivo disc compression model with fixateur externe was used in 36 mature rabbits. Discs were compressed for different time periods (1, 28, 56 days), and compared with uncompressed control discs (56 days without treatment), and discs with sham compression (28 days). Nucleus cell phenotype was determined by histology and immunohistochemistry. NCs, but not MNPCs highly expressed bone-morphogenetic-protein 2 and cytokeratin 8, thus NC and MNPC numbers could be determined. A histologic score was used to detect structural endplate changes after compression (28 days). Control and sham compressed discs contained around 70% NCs and 30% MNPCs, to be decreased to <10% NCs after 28–56 days of loading. NC density fell sharply by >50% after 28–56 days of compression (P < 0.05 vs. controls). Signs of decreased endplate cellularity and increased endplate sclerosis and fibrosis were found after loading. These experiments show that NCs were less resistant to mechanical stress than MNPCs suggesting that increased intradiscal pressures after loading, and limited nutrition through structurally altered endplates could instigate the disappearance of NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137

    Article  CAS  PubMed  Google Scholar 

  2. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19

    Article  PubMed  Google Scholar 

  3. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173

    Article  PubMed  Google Scholar 

  4. Bray JP, Burbidge HM (1998) The canine intervertebral disk. Part 2: Degenerative changes—nonchondrodystrophoid versus chondrodystrophoid disks. J Am Anim Hosp Assoc 34:135–144

    CAS  PubMed  Google Scholar 

  5. Butler W (1989) Comparative anatomy and development of the mammalian disc. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp 84–108

    Google Scholar 

  6. Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine 31:873–882 (discussion 883)

    Article  PubMed  Google Scholar 

  7. Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniations in the young and end-plate vascularity. Clin Anat 11:171–176

    Article  CAS  PubMed  Google Scholar 

  8. Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237:3953–3958

    Article  CAS  PubMed  Google Scholar 

  9. Coventry MB (1969) Anatomy of the intervertebral disk. Clin Orthop Relat Res 67:9–15

    Article  CAS  PubMed  Google Scholar 

  10. Erwin WM (2008) The notochord, notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation. J Cell Commun Signal 2:59–65

    Article  PubMed  Google Scholar 

  11. Erwin WM, Ashman K, O’Donnel P, Inman RD (2006) Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum 54:3859–3867

    Article  CAS  PubMed  Google Scholar 

  12. Freemont AJ, Watkins A, Le Maitre C, Jeziorska M, Hoyland JA (2002) Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J Pathol 196:374–379

    Article  CAS  PubMed  Google Scholar 

  13. Gottschalk D, Fehn M, Patt S, Saeger W, Kirchner T, Aigner T (2001) Matrix gene expression analysis and cellular phenotyping in chordoma reveals focal differentiation pattern of neoplastic cells mimicking nucleus pulposus development. Am J Pathol 158:1571–1578

    CAS  PubMed  Google Scholar 

  14. Gotz W, Osmers R, Herken R (1995) Localisation of extracellular matrix components in the embryonic human notochord and axial mesenchyme. J Anat 186(Pt 1):111–121

    PubMed  Google Scholar 

  15. Grunhagen T, Wilde G, Soukane DM, Shirazi-Adl SA, Urban JP (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg Am 88(Suppl 2):30–35

    Article  PubMed  Google Scholar 

  16. Guehring T, Omlor GW, Lorenz H, Bertram H, Steck E, Richter W, Carstens C, Kroeber M (2005) Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine 30:2510–2515

    Article  PubMed  Google Scholar 

  17. Guehring T, Unglaub F, Lorenz H, Omlor G, Wilke HJ, Kroeber MW (2006) Intradiscal pressure measurements in normal discs, compressed discs and compressed discs treated with axial posterior disc distraction: an experimental study on the rabbit lumbar spine model. Eur Spine J 15:597–604

    Article  PubMed  Google Scholar 

  18. Guehring T, Wilde G, Sumner M, Grunhagen T, Karney G, Tirlapur U, Urban JP (2009) Notochordal intervertebral disc cells—sensitivity to nutrient deprivation. Arthritis Rheum 60(4):1026–1034

    Article  PubMed  Google Scholar 

  19. Higuchi M, Abe K, Kaneda K (1983) Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study. Clin Orthop Relat Res, pp 251–257

  20. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119

    Article  CAS  PubMed  Google Scholar 

  21. Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677

    Article  CAS  PubMed  Google Scholar 

  22. Hunter CJ, Matyas JR, Duncan NA (2004) The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc. Spine 29:1099–1104

    Article  PubMed  Google Scholar 

  23. Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002

    Article  CAS  PubMed  Google Scholar 

  24. Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690

    Article  PubMed  Google Scholar 

  25. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506

    Article  CAS  PubMed  Google Scholar 

  26. McAlinden A, Zhu Y, Sandell LJ (2002) Expression of type II procollagens during development of the human intervertebral disc. Biochem Soc Trans 30:831–838

    Article  CAS  PubMed  Google Scholar 

  27. Miyazaki T, Kobayashi S, Takeno K, Meir A, Urban J, Baba H (2009) A Phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders? Tissue Eng Part A, 15 Aug 2009 [Epub ahead of print]

  28. Nachemson A (1975) Towards a better understanding of low-back pain: a review of the mechanics of the lumbar disc. Rheumatol Rehabil 14:129–143

    Article  CAS  PubMed  Google Scholar 

  29. Nerlich AG, Schleicher ED, Boos N (1997) 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 22:2781–2795

    Article  CAS  PubMed  Google Scholar 

  30. Oegema TR Jr (2002) The role of disc cell heterogeneity in determining disc biochemistry: a speculation. Biochem Soc Trans 30:839–844

    Article  CAS  PubMed  Google Scholar 

  31. Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW, Guehring T (2006) Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration–an in vivo study on the New Zealand white rabbit. J Orthop Res 24:385–392

    Article  CAS  PubMed  Google Scholar 

  32. Omlor GW, Nerlich A, Wilke HJ, Pfeiffer M, Lorenz H, Schaaf-Keim M, Bertram H, Richter W, Carstens C, Guehring T (2009) A new porcine in vivo model of disc degeneration-response of annulus fibrosus cells, chondrocyte-like nucleus pulposus cells and notochordal nucleus cells to partial nuceleotomy. Spine (in press)

  33. Palmer EI, Lotz JC (2004) The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res 22:164–169

    Article  PubMed  Google Scholar 

  34. Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86:162–179

    CAS  PubMed  Google Scholar 

  35. Setton LA, Chen J (2004) Cell mechanics and mechanobiology in the intervertebral disc. Spine 29:2710–2723

    Article  PubMed  Google Scholar 

  36. Soukane DM, Shirazi-Adl A, Urban JP (2007) Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech 40:2645–2654

    Article  PubMed  Google Scholar 

  37. Taylor T, Twomey L (1988) The development of the human intervertebral disc, chap 2. In: Ghosh P (ed) The biology of the intervertebral disc, vol 1. CRC Press, Boca Ratoon, pp 39–82

    Google Scholar 

  38. Taylor TK, Melrose J, Burkhardt D, Ghosh P, Claes LE, Kettler A, Wilke HJ (2000) Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells. Spine 25:3014–3020

    Article  CAS  PubMed  Google Scholar 

  39. Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14:359–369

    Article  CAS  PubMed  Google Scholar 

  40. Unglaub F, Guehring T, Lorenz H, Carstens C, Kroeber MW (2005) Effects of unisegmental disc compression on adjacent segments: an in vivo animal model. Eur Spine J 14:949–955

    Article  PubMed  Google Scholar 

  41. Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk: an in vivo study of solute transport. Clin Orthop Relat Res, pp 101–114

  42. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine 29:2700–2709

    Article  PubMed  Google Scholar 

  43. Urban MR, Fairbank JC, Etherington PJ, Loh FL, Winlove CP, Urban JP (2001) Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine 26:984–990

    Article  CAS  PubMed  Google Scholar 

  44. Walmsley R (1953) The development and growth of the intervertebral disc. Edinb Med J 60:341–364

    CAS  PubMed  Google Scholar 

  45. Whalen JL, Parke WW, Mazur JM, Stauffer ES (1985) The intrinsic vasculature of developing vertebral end plates and its nutritive significance to the intervertebral discs. J Pediatr Orthop 5:403–410

    CAS  PubMed  Google Scholar 

  46. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762

    Article  CAS  PubMed  Google Scholar 

  47. Zhu Y, McAlinden A, Sandell LJ (2001) Type IIA procollagen in development of the human intervertebral disc: regulated expression of the NH(2)-propeptide by enzymic processing reveals a unique developmental pathway. Dev Dyn 220:350–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jill Urban (Oxford University) for advice in data analysis. Dr. Helga Lorenz did the animal care, and K. Goetzke helped with histological analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg W. Omlor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guehring, T., Nerlich, A., Kroeber, M. et al. Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study. Eur Spine J 19, 113–121 (2010). https://doi.org/10.1007/s00586-009-1217-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1217-0

Keywords

Navigation