Skip to main content
Log in

Genetic structure of a population of the ectomycorrhizal fungus Russula vinosa in subtropical woodlands in southwest China

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The genetic structure of a population of the ectomycorrhizal fungus Russula vinosa was analyzed using random amplified polymorphic DNA markers. Of 121 bands, 114 (94.2%) were polymorphic and there was a high genetic diversity (H=34.98) in this population. Each sporocarp represented a different genet and the genet size was no larger than 1 m. Pairwise sporocarps closer than 10 m had significantly higher genetic similarity. Second-order analysis indicated clumps with a radius of about 20 m in the whole population as well as in three genetic groups, i.e. simple matching similarity coefficients (S m ) 0.5–0.6, 0.6–0.7, and 0.7–0.8, respectively. The high-genetic-similarity group tended to have small clumps with high density, whereas the low-genetic-similarity group tended to have large clumps with low density. The spatial pattern analysis showed that the population mainly spread by short-distance spore dispersal rather than vegetative growth of dicaryophytic mycelia or long-distance spore dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Reference

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press. Cambridge, UK, pp 66–68

  • Andersen M (1992) Spatial analysis of two species interactions. Oecologia 91:134–140

    Google Scholar 

  • Bastide PD, Kropp BR, Piché Y (1994) Spatial distribution and temporal persistence of discrete genotypes of the ectomycorrhizal fungus Laccaria bicolor (Maire) Orton. New Phytol 127:547–556

    Google Scholar 

  • Bergemann SE, Miller SL (2002) The size, distribution, and persistence of genets in local populations of the late-stage ectomycorrhizal basidiomycete, Russula brevipes. New Phytol 156:313–320

    Article  CAS  Google Scholar 

  • Bonello P, Bruns T, Gardes M (1998) Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol 138:533–542

    Article  CAS  Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562

    Article  Google Scholar 

  • Dahlberg A, Stenlid J (1990) Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytol 115:487–493

    Google Scholar 

  • Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol 128:225–234

    Google Scholar 

  • Dahlberg A, Stenlid J (1995) Spatiotemporal patterns in ectomycorrhizal populations. Can J Bot 73:1222–1230

    Google Scholar 

  • Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge University Press. Cambridge, UK, pp 206–241

  • Deacon JW, Fleming LV (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 249–300

  • Doudrick RL, Raffle VL, Nelson CD, Furnier GR (1995) Genetic analysis of homokaryons from a basidiome of Laccaria bicolor using random amplified polymorphic DNA (RAPD) markers. Mycol Res 99:1361–1366

    CAS  Google Scholar 

  • Egger KN (1994) Molecular analysis of ectomycorrhizal fungal communities. Can J Bot 73: S1415–S1422

    Google Scholar 

  • Fiore-Donno AM, Martin F (2001) Populations of ectomycorrhizal Laccaria amethystina and Xerocomus spp. show contrasting colonization patterns in a mixed forest. New Phytol 152:533–542

    Article  CAS  Google Scholar 

  • Fries N (1987) Somatic incompatibility and field distribution of the ectomycorrhizal fungus Suillus luteus (Boletaceae). New Phytol 107:735–739

    Google Scholar 

  • Getis A, Franklin J (1987) Second-order neighborhood analysis of mapped point patterns. Ecology 68:473–477

    Google Scholar 

  • Goreaud F, Pélissier R (1999) On explicit formulas of edge effect correction for Ripley’s K-function. J Veg Sci 10:433–438

    Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based morphology and rDNA sequences. New Phytol 147:617–630

    Article  CAS  Google Scholar 

  • Hadrys H, Balick M, Schierwater B (1992) Application of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1:55–63

    CAS  PubMed  Google Scholar 

  • Jacobson KM, Miller OK, Turner BJ (1993) Randomly amplified polymorphic DNA markers are superior to somatic incompatibility test for discrimination genotypes in natural populations of ectomycorrhizal fungus Suillus granulatus. Proc Natl Acad Sci USA 90:9159–9163

    CAS  PubMed  Google Scholar 

  • Junghans DT, Gomes EA, Guimarães WV, Barros EG, Araújo EF (1998) Genetic diversity of the ectomycorrhizal fungus Pisolithus tinctorius based on RAPD-PCR analysis. Mycorrhiza 7:243–248

    CAS  Google Scholar 

  • Kallio T (1970) Aerial distribution of the root-rot fungus Fomes annosus (Fr.) Cooke in Finland. Acta For Fen 107:1–55

    Google Scholar 

  • Kerrigan RW, Royer JC, Baller LM, Kohli Y, Horgen PA, Anderson JB (1993) Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genetics 133:225–236

    CAS  PubMed  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 357–423

  • Olson Å, Stenlid J (2000) Functional units in root diseases: lessons from Heterobasidion annosum. In: Flood J, Bridge PD, Holderness M (eds) Ganoderma diseases of perennial crops. CAB, Wallingford, UK, pp 139–156

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ (1997) Mycorrhizal fungi — the ties that bind. Nature 388:517–518

    Article  CAS  Google Scholar 

  • Redecker D, Szaro TM, Bowman RJ, Bruns TD (2001) Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol Ecol 10:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Ripley BD (1976) The second-order analysis of stationary processes, J Appl Prob 13:255–266

    Google Scholar 

  • Rohlf FJ (1992) NTSYS-pc numerical taxonomy and multivariate analysis system, 1.70. Exeter Software, Setauket, New York

  • Sawyer NA, Chambers SM, Cairney JWG (1999) Molecular investigation of genet distribution and genetic variation of Cortinarius rotundisporus in eastern Australian sclerophyll forests. New Phytol 142:561–568

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 34–74

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Article  Google Scholar 

  • Sneath P, Sokal R (1973) Numerical taxonomy. Freeman, San Francisco

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7:75–83

    Article  Google Scholar 

  • Timonen S, Tammi H, Sen R (1997) Outcome of interactions between genets of two Suillus species and different Pinus sylvestris genotype combinations: identity and distribution of ectomycorrhizas and effects on early seedling growth in N-limited nursery soil. New Phytol 137:691–702

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res 18:6531–6535

    CAS  Google Scholar 

  • Zhou ZH, Miwa M, Hogetsu T (2000) Genet distribution of ectomycorrhizal fungus Suillus grevillei populations in two Larix kaempferi stands over two years. J Plant Res 113:365–374

    Google Scholar 

  • Zhou ZH, Miwa M, Hogetsu T (2001) Polymorphism of simple sequence repeats reveals gene flow within and between ectomycorrhizal Suillus grevillei populations. New Phytol 149:339–348

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Basic Research and Development Plan of China Grant (G2000046802), the National Natural Science Foundation of China Grant (30070018), and the Chinese Academy of Sciences Grant (KSCX2-SW-101C). We are grateful to the Southwest Subalpine Botanical Garden, Chinese Academy of Sciences for providing climate data of the study site and to Dr. Xianming Gao, Dr. Canran Liu, and Dr. Xiaojun Du for providing species composition database of the site. We appreciate comments and suggestions by Prof. Jian Ni, Prof. John Cairney, Prof. Andrew Smith, as well as two anonymous reviewers, on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-ping Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Guo, Ld. & Ma, Kp. Genetic structure of a population of the ectomycorrhizal fungus Russula vinosa in subtropical woodlands in southwest China. Mycorrhiza 14, 235–240 (2004). https://doi.org/10.1007/s00572-003-0260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-003-0260-7

Keywords

Navigation