Skip to main content
Log in

Fabrication of high energy X-ray compound kinoform lenses using X-ray lithography

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nickel high energy X-ray compound kinoform lenses were fabricated by X-ray lithography technology at Beijing Synchrotron Radiation Facility. The nickel compound refractive lenses aim at focusing X-ray with 50 keV and the designed smallest width of the tooth-like segment is 2.5 μm. To keep the best morphology of the element, Au masks were made twice, whose thickness gradually increased. The fabrication process of compound lenses consists of three parts in general, including the intermediate mask (1.2 μm thick Au pattern) fabrication, the working mask (12 μm thick Au pattern) fabrication and the 300 μm high lenses fabrication. The intermediate mask was made by UV lithography (UV sample) and electron beam direct write lithography (EBDW sample) for comparison, and the EBDW sample had a better morphology than the UV sample at each step. Both samples were tested using the knife-edge scan method at BL13W1 beamline in Shanghai Synchrotron Radiation Facility, which provided the focal widths of 9.2 and 10.4 μm, and the photon flux gains of 6.9 and 5.4 for the EBDW and UV samples at an X-ray energy with 50 keV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alianelli L, Sawhney KJS, Barrett R, Pape I, Malik A, Wilson MC (2011) High efficiency nano-focusing kinoform optics for synchrotron radiation. Opt Expr 19:11120–11127

    Article  Google Scholar 

  • Aristov V, Grigoriev M, Kuznetsov S, Shabelnikov L, Yunkin V, Weitkamp T, Rau C, Snigireva I, Snigirev A, Hoffmann M, Voges E (2000) X-ray refractive planar lens with minimized absorption. Appl Phys Lett 77:4058–4060

    Article  Google Scholar 

  • Evans-Lutterodt K, Ablett JM, Stein A, Kao CC, Tennant DM, Klemens F, Taylor A, Gammel PL, Huggins H, Ustin S, Bogart G, Ocola L (2003) Single-element elliptical hard x-ray micro-optics. Opt Expr 11:919–926

    Article  Google Scholar 

  • Evans-Lutterodt K, Stein A, Ablett JM, Bozovic N, Taylor A, Tennant DM (2007) Using compound kinoform hard-X-ray lenses to exceed the critical angle limit. Phys Rev Lett 99:134801

    Article  Google Scholar 

  • Hong X, Ehm L, Zhong Z, Ghose S, Duffy TS, Weidner DJ (2016) High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures. Sci Rep 6:21434

    Article  Google Scholar 

  • Karvinen P, Grolimund D, Willimann M, Meyer B, Birri M, Borca C, Patommel J, Wellenreuther G, Falkenberg G, Guizar-Sicairos M, Menzel A, David C (2014) Kinoform diffractive lenses for efficient nanofocusing of hard X-rays. Opt Expr 22:16676–16685

    Article  Google Scholar 

  • Lengeler B, Schroer CG, Benner B, Gunzler TF, Kuhlmann M, Tummler J, Simionovici AS, Drakopoulos M, Snigirev A, Snigireva I (2001) Parabolic refractive X-ray lenses: a breakthrough in X-ray optics. Nucl Instrum Methods Phys Res Sect A-Accel Spectrom Dect Assoc Equip 467:944–950

    Article  Google Scholar 

  • Liao YX, Yi FT (2010) The fabrication and photoelectric properties of the nanopillar arrays for solar cell. Nanotechnology 21:465302

    Article  Google Scholar 

  • Liao KL, Liu J, Liang H, Wu XH, Zhang K, Yuan QX, Yi FT, Sheng WF (2016) Sub-500 nm hard x ray focusing by compound long kinoform lenses, applied optics. Appl Opt 55:38–41

    Article  Google Scholar 

  • LiRtge R, Adam D, Burkhardt F, Hoke F, Schacke H, Schmidt M, Wolf H, Schmidt A (1999) 40 keV shaped electron beam lithography for LIGA intermediate mask fabrication. Microelectron Eng 46:247–250

    Article  Google Scholar 

  • Liu J, Ashmkhan M, Wang B, Yi FT (2012) Fabrication and reflection properties of silicon nanopillars by cesium chloride self-assembly and dry etching. Appl Surf Sci 258:8825–8830

    Article  Google Scholar 

  • Nazmov V, Reznikova E, Snigirev A, Snigireva I, DiMichiel M, Grigoriev M, Mohr J, Matthis B, Saile V (2005) LIGA fabrication of X-ray nickel lenses. Microsyst Technol 11:292–297

    Article  Google Scholar 

  • Nazmov V, Kluge M, Last A, Marschall F, Mohr J, Simon HV (2014) LIGA micro-openings for coherence characterization of X-rays. Microsyst Technol 20:2031–2036

    Article  Google Scholar 

  • Nazmov V, Mohr J, Greving I, Ogurreck M, Wilde F (2015) Modified x-ray polymer refractive cross lens with adiabatic contraction and its realization. J Micromech Microeng 25:055010

    Article  Google Scholar 

  • Sandy AR, Narayanan S, Sprung M, Su JD, Evans-Lutterodt K, Isakovic AF, Stein A (2010) Kinoform optics applied to x-ray photoncorrelation spectroscopy. J Synchrotron Radiat 17:314–320

    Article  Google Scholar 

  • Scheunemann H, Loechel B, Jian L, Schondelmaier D, Desta YM, Goettert J (2003) Cost effective masks for deep X-ray lithography. Proc of SPIE 5116:775–781

    Article  Google Scholar 

  • Shabel’nikov L, Nazmov V, Pantenburg FJ, Mohr J, Saile V, Yunkin V, Kouznetsov S, Pindyurin V, Snigireva I, Snigirev A (2002) X-ray lens with kinoform refractive profile created by X-ray lithography. Proc SPIE 4783:176–184

    Article  Google Scholar 

  • Snigirev A, Kohn V, Snigireva I, Lengeler B (1996) A compound refractive lens for focusing high energy X-rays. Nature 384:49–51

    Article  Google Scholar 

  • Snigirev A, Snigireva I, Souvorov A, Lengeler B, Kohn V (1998) Focusing high-energy X-rays by compound refractive lenses. Appl Opt 37:653–662

    Article  Google Scholar 

  • Snigirev A, Snigireva I, Di Michiel M, Honkimaki V, Grigoriev M, Nazmov V, Reznikova E, Mohr J, Saile V (2004) Sub-micron focusing of high energy X-rays with Ni refractive lenses. Proc SPIE 5539:244–250

    Article  Google Scholar 

  • Suter RM, Hennessy D, Xiao C, Lienert U (2006) Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: single-crystal verification. Rev Sci Instrum 77:123905

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Projects 11305202, 11605226 supported by NSFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, W., Chang, G. et al. Fabrication of high energy X-ray compound kinoform lenses using X-ray lithography. Microsyst Technol 23, 1553–1562 (2017). https://doi.org/10.1007/s00542-017-3304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3304-1

Keywords

Navigation