Skip to main content
Log in

Design a new MEMS tunable capacitors using electro-thermal actuators

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a new structure for the Micro-electromechanical capacitors with high capacitance and tuning range. The obvious feature of the proposed capacitor is the use of a thermal actuator to change the dielectric coefficient of capacitor. In this work, BaTiO3 is used as a dielectric. Due to its high dielectric coefficient, BaTiO3 increases the capacitance in this structure. Another characteristic of this material is that it changes the dielectric coefficient linearly in a specified temperature range. Through this work, given the thermal properties of the dielectric, a variable capacitor with a wide tuning range is made using a heater as a thermal actuator. The proposed variable capacitor has a one-piece structure and removes problems such as the pull-in effects completely by eliminating the moving parts. The results show that the tuning range of the proposed capacitor is about 600 % and its capacitance density is equal to 41.66 μF cm−2. This capacitor can be used in the MEMS telecommunication systems, particularly radars that require high capacity with too small sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Achenbach S, Klymyshyn D, Haluzan D, Mappes T, Wells G, Mohr J (2007) Fabrication of RF MEMS variable capacitors by deep X-ray lithography and electroplating. Microsyst Technol 13:343–347

    Article  Google Scholar 

  • Arlt G, Hennings D (1985) Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 58:1619–1625

    Article  Google Scholar 

  • Byun I, Ueno R, Kim B (2014) Micro-heaters embedded in PDMS fabricated using dry peel-off process. Microelectron Eng 121:1–4

    Article  Google Scholar 

  • Chen J, Zou J, Liu C, Schutt-Ainé JE, Kang S-M (2003) Design and modeling of a micromachined high-Q tunable capacitor with large tuning range and a vertical planar spiral inductor electron devices. IEEE Transac 50:730–739

    Article  Google Scholar 

  • Choi J, Eun Y, Pyo S, Sim J, Kim J (2012) Vertically aligned carbon nanotube arrays as vertical comb structures for electrostatic torsional actuator. Microelectron Eng 98:405–408

    Article  Google Scholar 

  • Chung G-S, Jeong J-M (2010) Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics. Microelectron Eng 87:2348–2352

    Article  Google Scholar 

  • Dai C-L, Lin S-C, Chang M-W (2007) Fabrication and characterization of a microelectromechanical tunable capacitor. Microelectron J 38:1257–1262

    Article  Google Scholar 

  • El Kamel F, Gonon P, Jomni F (2006) Electrical properties of low temperature deposited amorphous barium titanate thin films as dielectrics for integrated capacitors. Thin Solid Films 504:201–204

    Article  Google Scholar 

  • Etxeberria JA, Gracia F (2007) Tunable MEMS volume capacitors for high voltage applications. Microelectron Eng 84:1393–1397

    Article  Google Scholar 

  • Feng Z, Zhang W, Su B, Harsh KF, Gupta K, Bright V, Lee Y (1999) Design and modeling of RF MEMS tunable capacitors using electro-thermal actuators. In: IEEE MTT-S International Microwave Symposium Digest. IEEE, pp 1507–1510

  • Fernando S, Min T, Khine L, Agarwal R, Lau KH, Soon JB, Tsai MLJ (2011) AlN Actuator for Tunable RFMEMS capacitor. Adv Mater Res 254:29–33

    Article  Google Scholar 

  • He F, Ren W, Liang G, Shi P, Wu X, Chen X (2013) Structure and dielectric properties of barium titanate thin films for capacitor applications. Ceram Int 39:S481–S485

    Article  Google Scholar 

  • Jaafar H, Beh K, Yunus N, Hasan W, Shafie S, Sidek O (2014) A comprehensive study on RF MEMS switch. Microsyst Technol 20:2109–2121

    Article  Google Scholar 

  • Jung D, Kim D, Lee KH, Overzet LJ, Lee GS (2013) Transparent film heaters using multi-walled carbon nanotube sheets. Sens Actuators A 199:176–180

    Article  Google Scholar 

  • Kassing R, Rangelow I (1996) Etching processes for high aspect ratio micro systems technology (HARMST). Microsyst Technol 3:20–27

    Article  Google Scholar 

  • Khan U, Falconi C (2013) Temperature distribution in membrane-type micro-hot-plates with circular geometry. Sens Actuators B Chem 177:535–542

    Article  Google Scholar 

  • Lee KB (2008) Design methodology for variable capacitors. J Micromech Microeng 18:025016

    Article  Google Scholar 

  • Li B et al (2004) Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering. Mater Chem Phys 83:23–28

    Article  Google Scholar 

  • Li W, Xu Z, Chu R, Fu P, Hao J (2009) Structure and electrical properties of BaTiO3 prepared by sol–gel process. J Alloy Compd 482:137–140

    Article  Google Scholar 

  • Mahmoodnia H, Ganji BA (2013) A novel high tuning ratio MEMS cantilever variable capacitor. Microsyst Technol 19:1913–1918

    Article  Google Scholar 

  • Maluf N, Williams K (2004) An introduction to microelectromechanical systems engineering. Artech House, Boston

  • Mehdaoui A, Pisani MB, Tsamados D, Casset F, Ancey P, Ionescu AM (2007) MEMS tunable capacitors with fragmented electrodes and rotational electro-thermal drive. Microsyst Technol 13:1589–1594. doi:10.1007/s00542-006-0350-5

    Article  Google Scholar 

  • Minase J, Lu TF, Cazzolato B, Grainger S (2010) A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis Eng 34:692–700. doi:10.1016/j.precisioneng.2010.03.006

    Article  Google Scholar 

  • Mobki H, Sadeghi MH, Afrang S, Rezazadeh G (2011) On the tunability of a MEMS based variable capacitor with a novel structure. Microsyst Technol 17:1447–1452

    Article  Google Scholar 

  • Momose T, Yamada H, Kitamura Y, Hattori Y, Shimogaki Y, Sugiyama M (2011) MEMS-compatible high-density trench capacitor with ultra-conformal Cu/SiO2 layers by supercritical fluid deposition. In: IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, pp 1309–1312

  • Nguyen HD, Hah D, Patterson PR, Rumin C, Piyawattanametha W, Lau EK, Wu MC (2004) Angular vertical comb-driven tunable capacitor with high-tuning capabilities. Microelectromech Syst J 13:406–413. doi:10.1109/jmems.2004.828741

    Article  Google Scholar 

  • Ozmaian M, Naghdabadi R (2013) Semi-conducting carbon nanotube as variable capacitor. Physica E Low Dimens Syst Nanostructures 54:9–14

    Article  Google Scholar 

  • Pagazani J, Nicole P, Rousseau L, Marty F, Lissorgues G (2011) A new design for rotational, tunable wideband RF MEMS capacitors. Microsyst Technol 17:513–522

    Article  Google Scholar 

  • Park S-S, Ha J-H, Wadley HN (2007) Preparation of BaTiO3 films for MLCCs by direct vapor deposition. Integr Ferroelectr 95:251–259

    Article  Google Scholar 

  • Roozeboom F et al (2009) Ultrahigh-density trench capacitors in silicon and their application to integrated DC-DC conversion. Procedia Chem 1:1435–1438

    Article  Google Scholar 

  • Shah U, Sterner M, Oberhammer J (2013) Multi-Position RF MEMS Tunable Capacitors Using Laterally Moving Sidewalls of 3-D Micromachined Transmission Lines Microwave Theory and Techniques. IEEE Trans 61:2340–2352. doi:10.1109/tmtt.2013.2259499

    Google Scholar 

  • Shavezipur M, Hashemi S, Nieva P, Khajepour A (2010) Development of a triangular-plate MEMS tunable capacitor with linear capacitance–voltage response. Microelectron Eng 87:1721–1727

    Article  Google Scholar 

  • Spannhake J et al (2007) SnO2: Sb—A new material for high-temperature MEMS heater applications: performance and limitations. Sens Actuators B Chem 124:421–428

    Article  Google Scholar 

  • Tung-Sheng C, Balu V, Katakam S, Jian-Hung L, Lee JC (1999) Effects of Ir electrodes on barium strontium titanate thin-film capacitors for high-density memory application Electron Devices. IEEE Trans 46:2304–2310. doi:10.1109/16.808068

    Article  Google Scholar 

  • Velmathi G, Ramshanker N, Mohan S (2010) 2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications. In: COMSOL Conference I, 2010. pp 2–5

  • Wu B, Kumar A, Pamarthy S (2010) High aspect ratio silicon etch: a review. J Appl Phys 108:051101

    Article  Google Scholar 

  • Xie J (2014) Fabrication challenges and test structures for high-aspect-ratio SOI MEMS devices with refilled electrical isolation trenches. Microsyst Technol. doi:10.1007/s00542-014-2357-7

    Google Scholar 

  • Zhang B, Fang D (2009) Modeling and modification of the parallel plate variable MEMS capacitors considering deformation issue. Mech Mach Theory 44:647–655

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Delpasand Motlagh Shirazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirazi, A.D.M., Faraji, R., Mehran, M. et al. Design a new MEMS tunable capacitors using electro-thermal actuators. Microsyst Technol 21, 2475–2483 (2015). https://doi.org/10.1007/s00542-015-2476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2476-9

Keywords

Navigation