Skip to main content
Log in

Complete surfaces of constant curvature in H2 × R and S2 × R

  • Original Paper
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study isometric immersions of surfaces of constant curvature into the homogeneous spaces \({\mathbb{H}^2\times\mathbb{R}}\) and \({\mathbb{S}^2\times\mathbb{R}}\) . In particular, we prove that there exists a unique isometric immersion from the standard 2-sphere of constant curvature c > 0 into \({\mathbb{H}^2\times\mathbb{R}}\) and a unique one into \({\mathbb{S}^2\times\mathbb{R}}\) when c > 1, up to isometries of the ambient space. Moreover, we show that the hyperbolic plane of constant curvature c < −1 cannot be isometrically immersed into \({\mathbb{H}^2\times\mathbb{R}}\) or \({\mathbb{S}^2\times\mathbb{R}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch U. and Rosenberg H. (2004). A Hopf differential for constant mean curvature surfaces in \({{\mathbb{S}^2\times\mathbb{R}}}\) and \({{\mathbb{H}^2\times\mathbb{R}}}\) Acta Math. 193: 141–174

    Article  MATH  MathSciNet  Google Scholar 

  2. Alencar, H., do Carmo, M., Tribuzy, R.: A theorem of H. Hopf and the Cauchy–Riemann inequality, preprint (Available at http://www.pos.mat.ufal.br/AlencarCarmoTrib.pdf)

  3. Fernández, I., Mira, P.: Harmonic maps and constant mean curvature surfaces in \({{\mathbb{H}^2\times\mathbb{R}}}\) , Am. J. Math. (2006) (in press) (Available at http://arXiv.org/math.DG/0507386)

  4. Fernández, I., Mira, P.: A characterization of constant mean curvature surfaces in homogeneous 3-manifolds. Diff. Geom. Appl. (2006) (in press)

  5. Gálvez, J.A., Mira, P.: (in preparation)

  6. Klotz T. (1963). Some uses of the second conformal structure on strictly convex surfaces. Proc. Am. Math. Soc. 14: 793–799

    Article  MATH  MathSciNet  Google Scholar 

  7. Milnor T.K. (1980). Abstract Weingarten Surfaces. J. Diff. Geom. 15: 365–380

    MATH  MathSciNet  Google Scholar 

  8. Montaldo S., Onnis I.I. (2005). Invariant surfaces of a three-dimensional manifold with constant Gauss curvature. J. Geom. Phys. 55: 440–449

    Article  MATH  MathSciNet  Google Scholar 

  9. Morrey, C.B.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York (1966)

  10. Weinstein, T.: An introduction to Lorentz surfaces, Walter de Gruiter, Berlin, New York, (1996)

  11. Wissler C. (1972). Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten und Fortsetzung von Flächen konstanter negativer Krümmung. Comm. Math. Helv. 47: 348–372

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Aledo.

Additional information

J.A. Aledo was partially supported by Ministerio de Education y Ciencia Grant No. MTM2004-02746 and Junta de Comunidades de Castilla-La Mancha, grant no. PAI-05-034.

J.M. Espinar and J.A. Gálvez were partially supported by Ministerio de Education y Ciencia grant no. MTM2004-02746 and Junta de Andalucía Grant No. FQM325.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aledo, J.A., Espinar, J.M. & Gálvez, J.A. Complete surfaces of constant curvature in H2 × R and S2 × R. Calc. Var. 29, 347–363 (2007). https://doi.org/10.1007/s00526-006-0067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0067-4

Mathematics Subject Classification (2000)

Navigation