Skip to main content

Advertisement

Log in

The use of composite meshes in laparoscopic repair of abdominal wall hernias: are there differences in biocompatibily?

Experimental results obtained in a laparoscopic porcine model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Introduction

In recent years, laparoscopic repair of abdominal wall hernias has become increasingly established in routine clinical practice thanks to the myriad advantages it confers. Apart from the risk of intestinal damage following adhesiolysis, to date no information is available on the best way of preventing the formation of new adhesions in the vicinity of the implanted meshes. Numerous experimental investigations, mainly conducted on an open small-animal model, have demonstrated the advantages of coating meshes, inter alia with absorbable materials, compared with uncoated polypropylene meshes. In our established laparoscopic porcine model we set about investigating three of these meshes, which are already available on the market.

Materials and methods

In total, 18 domestic pigs underwent laparoscopic surgery and three different composite meshes were tested in each case on six animals (Dynamesh IPOM, Proceed, Parietene Composite). At 4 months, postmortem diagnostic laparoscopy was carried out, followed by full-wall excision of the specimens. Planimetric analysis was conducted to investigate the size of the entire surface area and the extent of adhesions. Histological investigations were performed on five sections for each specimen. These focused on the partial volumes of inflammatory cells, the proliferation marker Ki67, apoptotic index, inflammatory cell marker CD68 and transforming growth factor beta (TGF-β) as a marker of the extracellular matrix.

Results

A similar value of 14% was obtained for shrinkage of Dynamesh IPOM and Parietene Composite, while Proceed showed a 25% reduction in its surface area. Markedly lower values of 12.8% were obtained for Parietene Composite in respect of adhesions to the greater omentum, compared with 31.7% for Proceed and 33.2% for Dynamesh IPOM (p = 0.01). Overall, Parietene Composite performed best in the histological and immunhistochemistry tests.

Conclusions

On the whole, all composite meshes showed evidence of good biocompatibility. However, none of the coatings was completely able to prevent adhesions. Coating of polypropylene meshes with collagen appears to confer significant advantages compared with other coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alimoglu O, Akcakaya A, Sahin M, Unlu Y, Ozkan OV, Sanli E, Erylmaz R (2003) Prevention of adhesion formations following repair of abdominal wall defects with prosthetic materials (an experimental study). Hepatogastroenterology 50:725–728

    PubMed  Google Scholar 

  2. Amid PK, Shulman AG, Lichtenstein IL, Sostrin S, Young J, Hakakha M (1994) Experimental evaluation of a new composite mesh with the selective property of incorporation to the abdominal wall without adhering to the intestines. J Biomed Mater Res 28:373–375

    Article  PubMed  CAS  Google Scholar 

  3. Arnaud JP, Hennekinne-Mucci S, Pessaux P, Tuech JJ, Aube C (2003) Ultrasound detection of visceral adhesion after intraperitoneal ventral hernia treatment: a comparative study of protected versus unprotected meshes. Hernia 7:85–88

    Article  PubMed  CAS  Google Scholar 

  4. Baptista ML, Bonsack ME, Felemovicius I, Delaney JP (2000) Abdominal adhesions to prosthetic mesh evaluated by laparoscopy and electron microscopy. J Am Coll Surg 190:271–280

    Article  PubMed  CAS  Google Scholar 

  5. Baykal A, Yorganci K, Sokemensuer C, Hamaloglu E, Renda N, Sayek I (2000) An experimental study of the adhesive potential of different meshes. Eur J Surg 166:490–494

    Article  PubMed  CAS  Google Scholar 

  6. Bellon JM, Garcia-Carranza A, Jurado F, Garcia-Honduvilla N, Carrera-San Martin A, Bujan J (2001) Peritoneal regeneration after implant of composite prosthesis in the abdominal wall. World J Surg 25:147–152

    Article  PubMed  CAS  Google Scholar 

  7. Bellon JM, Garcia-Honduvilla N, Jurado F, Garcia-Carranza A, Garcia-Moreno F, Martin AC, Bujan J (2001) Use of composite prostheses in the repair of defects in abdominal wall: prosthetic behaviour at the peritoneum. Eur J Surg 167:666–671

    Article  PubMed  CAS  Google Scholar 

  8. Bellon JM, Jurado F, Garcia-Honduvilla N, Lopez R, Carrera-San Martin A, Bujan J (2002) The structure of a biomaterial rather than its chemical composition modulates the repair process at the peritoneal level. Am J Surg 184:154–159

    Article  PubMed  CAS  Google Scholar 

  9. Bellon JM, Rodriguez M, Garcia-Honduvilla N, Pascual G, Bujan J (2007) Partially absorbable meshes for hernia repair offer advantages over nonabsorbable meshes. Am J Surg 194:68–74

    Article  PubMed  Google Scholar 

  10. Bellon JM, Rodriguez M, Garcia-Honduvilla N, Pascual G, Gomez Gil V, Bujan J (2007) Peritoneal effects of prosthetic meshes used to repair abdominal wall defects: monitoring adhesions by sequential laparoscopy. J Laparoendosc Adv Surg Tech A 17:160–166

    Article  PubMed  Google Scholar 

  11. Berger D (2007) Prevention of parastomal hernias by prophylactic use of a specially designed intraperitoneal onlay mesh (Dynamesh IPST (R)). epub ahead of print, Hernia

    Google Scholar 

  12. Besim H, Yalcin Y, Hamamci O, Arslan K, Sonisik M, Korkmaz A, Erdogan S (2002) Prevention of intraabdominal adhesions produced by polypropylene mesh. Eur Surg Res 34:239–243

    Article  PubMed  CAS  Google Scholar 

  13. Burger JW, Halm JA, Wijsmuller AR, ten Raa S, Jeekel J (2006) Evaluation of new prosthetic meshes for ventral hernia repair. Surg Endosc 20:1320–1325

    Article  PubMed  CAS  Google Scholar 

  14. Christoforoni PM, Kim YB, Preys Z, Lay RY, Montz FJ (1996) Adhesion formation after incisional hernia repair: a randomized porcine trial. Am Surg 62:935–938

    PubMed  CAS  Google Scholar 

  15. Cobb WS, Burns JM, Peindl RD, Carbonell AM, Matthews BD, Kercher KW, Heniford BT (2006) Textile analysis of heavy weight, mid-weight and light-weight polypropylene mesh in a porcine ventral hernia model. J Surg Res 136:1–7

    Article  PubMed  CAS  Google Scholar 

  16. Conze J, Rosch R, Klinge U, Weiss C, Anurov M, Titkowa S, Oettinger A, Schumpelick V (2004) Polypropylene in the intra-abdominal position: influence of pore-size and surface area. Hernia 8:365–372

    Article  PubMed  CAS  Google Scholar 

  17. Conze J, Junge K, Klinge U, Weiss C, Polivoda M, Oettinger AP, Schumpelick V (2005) Intraabdominal adhesion formation of polypropylene mesh. Influence of coverage of omentum and polyglactin. Surg Endosc 19:798–803

    Article  PubMed  CAS  Google Scholar 

  18. Dilege E, Coskun H, Gunduz B, Sakiz D, Mihmanli M (2006) Prevention of adhesion to prosthetic mesh in incisional ventral hernias: comparison of different barriers in an experimental model. Eur Surg Res 38:358–364

    Article  PubMed  CAS  Google Scholar 

  19. Dinsmore RC, Calton WC, Harvey SB, Blaney MW (2000) Prevention of adhesions to polypropylene mesh in a traumatized bowel model. J Am Coll Surg 191:131–136

    Article  PubMed  CAS  Google Scholar 

  20. Hogle Duffy AJ, NJ LaPerle KM, Fowler DL (2004) Comparison of two composite meshes using two fixation devices in a porcine laparoscopic ventral hernia repair model. Hernia 8:358–364

    Article  PubMed  Google Scholar 

  21. Eriksen JR, Gögenur I, Rosenberg J (2007) Choice of mesh for laparoscopic ventral hernia repair. Hernia 11:481–492

    Article  PubMed  CAS  Google Scholar 

  22. Felemovicius I, Bonsack ME, Hagerman G, Delaney JP (2004) Prevention of adhesions to polypropylene mesh. J Am Coll Surg 198:543–548

    Article  PubMed  Google Scholar 

  23. Fitzgibbons RJ Jr, Salerno GM, Filipi CJ, Hunter WJ, Watson P (1994) A laparoscopic intraperitoneal onlay mesh technique for the repair of an indirect inguinal hernia. Ann Surg 219:144–156

    Article  PubMed  Google Scholar 

  24. Fitzgibbons RJ Jr (2000) Adding laparoscopy to experimental adhesion study protocols. J Am Coll Surg 190:336–338

    Article  PubMed  Google Scholar 

  25. Garcia-Ruiz A, Naitoh T, Gagner M (1998) A porcine model for laparoscopc ventral hernia repair. Surg Laparosc Endosc 8:35–39

    Article  PubMed  CAS  Google Scholar 

  26. Gonzalez R, Rodeheaver GT, Moody DL, Foresman PA, Ramshaw BJ (2004) Resistance to adhesion formation: a comparative study of treated and untreated mesh products placed in abdominal cavity. Hernia 8:213–219

    Article  PubMed  CAS  Google Scholar 

  27. Gutt CN, Oniu T, Mehrabi A, Büchler W (2004) Fewer adhesions induced by laparoscopic surgery? Surg Endosc 18:898–906

    Article  PubMed  CAS  Google Scholar 

  28. Halm JA, de Wall LL, Steyerberg EW, Jeekel J, Lange JF (2006) Intraperitoneal polypropylene mesh hernia repair complicates subsequent abdominal surgery. World J Surg 31:423–429

    Article  Google Scholar 

  29. Harrell AG, Novitsky YW, Peindl RD, Cobb WS, Austin CE, Cristiano JA, Norton JH, Kercher KW, Heniford BT (2006) Prospective evaluation of adhesion formation and shrinkage of intraabdominal prosthetics in a rabbit model. Am Surg 72:808–813

    PubMed  Google Scholar 

  30. Hengirmen S, Cete M, Soran A, Aksoy F, Sencer H, Olcay E (1998) Comparison of meshes for the repair of abdominal wall defects. J Invest Surg 11:315–325

    Article  PubMed  CAS  Google Scholar 

  31. Jacob BP, Hogle NJ, Durak E, Kim T, Fowler DL (2007) Tissue ingrowth and bowel adhesion formation in an animal comparative study: polypropylene versus Proceed versus Parietex Composite. Surg Endosc 21:629–633

    Article  PubMed  CAS  Google Scholar 

  32. Judge TW, Parker DM, Dinsmore RC (2007) Abdominal wall hernia repair. A comparison of sepramesh and parietex composite mesh in a rabbit hernia model. J Am Coll Surg 204:276–281

    Article  PubMed  Google Scholar 

  33. Junge K, Rosch R, Klinge U, Krones C, Klosterhalfen B, Mertens PR, Lynen P, Kunz D, Preiss A, Peltroche-Llacsahuanga H, Schumpelick V (2005) Gentamicin supplementation of polyvinylidenfluoride mesh materials for infection prophylaxis. Biomaterials 26:787–793

    Article  PubMed  CAS  Google Scholar 

  34. Junge K, Klinge U, Rosch R, Lynen P, Binnebösel M, Conze J, Mertens PR, Schwab R, Schumpelick V (2007) Improved collagen I/III ratio at the interface of gentamicin-supplemented polyvinylidenfluoride mesh materials. Langenbeck’s Arch Surg 392:465–471

    Article  Google Scholar 

  35. Kayaoglu HA, Ozkan N, Hazinedaroglu SM, Ersoy OF, Erkek AB, Koseoglu RD (2005) Comparison of adhesive properties of five different prosthetic materials used in hernioplasty. J Invest Surg 18:89–95

    Article  PubMed  Google Scholar 

  36. Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–3493

    Article  PubMed  CAS  Google Scholar 

  37. Koehler RH, Begos D, Berger D, Carey S, LeBlanc K, Park A, Ramshaw B, Smoot R, Voeller G (2003) Minimal Adhesions to ePTFE mesh after laparoscopic ventral incisional hernia repair: reoperative findings in 65 cases. JSLS 7:335–340

    PubMed  Google Scholar 

  38. McGinty JJ, Hogle NJ, McCarthy H, Fowler DL (2005) A comparative study of adhesion formation and abdominal wall ingrowth after laparoscopic ventral hernia repair in a porcine model using multiple types of mesh. Surg Endosc 19:786–790

    Article  PubMed  CAS  Google Scholar 

  39. Morris-Stiff G, Hughes LE (1998) The outcomes of non-absorbable mesh placed within the abdominal cavity: literature review and clinical experience. J Am Coll Surg 186:352–357

    Article  PubMed  CAS  Google Scholar 

  40. Ozmen MM, Aslar AK, Terzi MC, Albayrak L, Berberoglu M (2002) Prevention of adhesions by bioresorbable tissue barrier following laparoscopic intraabdominal mesh insertion. Surg Laparosc Endosc Percutan Tech 12:342–346

    Article  PubMed  Google Scholar 

  41. Robinson TN, Clarke JH, Schoen J, Walsh MD (2005) Major-related complications following hernia repair: events reported to the Food and Drug Administration. Surg Endosc 19:1556–1560

    Article  PubMed  CAS  Google Scholar 

  42. Rudmik LR, Schieman C, Dixon E, Debru E (2006) Laparoscopic incisional hernia repair: a review of the literature. Hernia 10:110–119

    Article  PubMed  CAS  Google Scholar 

  43. Schug-Pass C, Tamme C, Tannapfel A, Köckerling F (2006) A lightweight polypropylene mesh (TiMesh) for laparoscopic intraperitoneal repair of abdominal wall hernias–comparison of biocompatibility with the DualMesh in an experimental study using the porcine model. Surg Endosc 20:402–409

    Article  PubMed  CAS  Google Scholar 

  44. Schug-Pass C, Sommerer F, Tannapfel A, Lippert H, Köckerling (2008) Does the additional application of a polylactide film (SurgiWrap®) to a lightweight mesh (TiMesh) reduce adhesions in laparoscopic intraperitoneal implantation procedures? Experimental results obtained in the laparoscopic porcine model. Surg Endosc 2008 Apr 24 (Epub ahead of print)

  45. Sikkink CJJM, Vries de Reilingh TS, Malyar AW, Jansen JA, Bleichrodt RP, van Goor H (2006) Adhesion formation and reherniation differ between meshes used for abdominal wall reconstruction. Hernia 10:218–222

    Article  PubMed  CAS  Google Scholar 

  46. Thompson J (1998) Pathogenesis and prevention of adhesion formation. Dig Surg 15:153–157

    Article  PubMed  CAS  Google Scholar 

  47. van’t Riet M, van Steenwijk PJ, Bonthuis F, Marquet RL, Steyerberg EW, Jeekel J, Bonjer HJ (2003) Prevention of adhesion to prosthetic mesh: comparison of different barriers using an incisional hernia model. Ann Surg 237:123–128

    Article  Google Scholar 

  48. van’t Riet M, Burger WA, Bonthuis F, Jeekel J, Bonjer HJ (2004) Prevention of adhesion formation to polypropylene mesh by collagen coating: a randomized controlled study in a rat model of ventral hernia repair. Surg Endosc 18:681–685

    Article  PubMed  CAS  Google Scholar 

  49. Vrijland WW, Bonthuis F, Steyerberg EW, Marquet RL, Jeekel J, Bonjer HJ (2000) Peritoneal adhesions to prosthetic materials: choice of mesh for incisional hernia repair. Surg Endosc 14:960–963

    Article  PubMed  CAS  Google Scholar 

  50. Weyhe D, Belyaev O, Müller C, Meurer K, Bauer KH, Papapostou G, Uhl W (2007) Improving outcomes in hernia repair by the use of light meshes—a comparison of different implant constructions based on a critical appraisal of the literature. Word J Surg 31:234–244

    Article  Google Scholar 

  51. Winslow ER, Diaz S, Desai K, Meininger T, Soper NJ, Klingensmith ME (2004) Laparoscopic incisional hernia repair in a porcine model: what do transfixation sutures add? Surg Endsoc 18:529–535

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Schug-Pass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schug-Pass, C., Sommerer, F., Tannapfel, A. et al. The use of composite meshes in laparoscopic repair of abdominal wall hernias: are there differences in biocompatibily?. Surg Endosc 23, 487–495 (2009). https://doi.org/10.1007/s00464-008-0085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-008-0085-8

Keywords

Navigation