Skip to main content
Log in

Gap Probabilities and Betti Numbers of a Random Intersection of Quadrics

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We consider the Betti numbers of an intersection of k random quadrics in \(\mathbb {R}\text {P}^n\). Sampling the quadrics independently from the Kostlan ensemble, as \(n \rightarrow \infty \) we show that for each \(i\ge 0\) the expected ith Betti number satisfies

$$\begin{aligned} \mathbb {E}b_i(X)=1+O(n^{-M})\quad \text {for all } M>0. \end{aligned}$$

In other words, each fixed Betti number of X is asymptotically expected to be one; in fact as long as \(i=i(n)\) is sufficiently bounded away from n / 2 the above rate of convergence is uniform (and in this range Betti numbers concentrate to their expected value). For the special case \(k=2\) we study the expectation of the sum of all Betti numbers of X. It was recently shown (Lerario, in Proc. Am. Math. Soc. 143:3239–3251, 2015) that this expected sum equals \(n+o(n)\); here we sharpen this asymptotic, showing that

$$\begin{aligned} \sum _{j=0}^n\mathbb {E}b_j(X)=n + \frac{2}{\sqrt{\pi }}n^{1/2} + O(n^c) \quad \text {for any } c>0 \end{aligned}$$
(1)

(the term \(\tfrac{2}{\sqrt{\pi }}n^{1/2}\) comes from contributions of middle Betti numbers). The proofs are based on a combination of techniques from random matrix theory and spectral sequences. In particular (1) is based on a reduction that requires an average count of the number of singular quadrics in a random pencil; this count turns out to be related to the derivative at zero of the gap probability \(f_{\beta , n}\) in finite Gaussian \(\beta \)-ensembles (\(\beta =1,2,4\)). We provide also new computations for this quantity and as n goes to infinity:

$$\begin{aligned} f_{\beta , n}'(0)\sim -\frac{2\sqrt{2}}{\pi }n^{1/2}. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Here for a topological space X the number b(X) denotes the sum of its Betti numbers.

  2. Fixing a scalar product on \(\mathbb {R}^n\) we can associate to each quadratic form q a symmetric matrix Q by setting \(q(x)=\langle x, Q x\rangle \) for all \(x\in \mathbb {R}^n\).

  3. This terminology will be explained in detail below.

  4. Here we use the same notation as in [12] to help the reader comparing with this reference. The subscript of \(\sigma _V\) is due to the connection with the Painlevé fifth equation.

  5. Except empty curves of degree n when \(n\equiv 2 \,\text {mod}\, 4.\)

  6. Hereafter all homology and cohomology groups will be with \(\mathbb {Z}_2\) coefficients.

  7. The strange but standard indexing is due to Alexander-Pontryiagin duality.

References

  1. Adams, J., Lax, P., Phillips, R.: On matrices whose real linear combinations are non-singular. Proc. Am. Math. Soc. 16, 318–322 (1965)

    MathSciNet  Google Scholar 

  2. Agrachev, A.A.: Topology of quadratic maps and Hessians of smooth maps. Itogi Nauki VINITI Algebra Topologiya Geom. 26, 85–124 (1988)

    MathSciNet  Google Scholar 

  3. Agrachev, A.A., Lerario, A.: Systems of quadratic inequalities. Proc. Lond. Math. Soc. 105, 622–660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  5. Barvinok, A.I.: On the Betti numbers of semialgebraic sets defined by few quadratic inequalities. Math. Z. 225(2), 231–244 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Basu, S., Pasechnik, D., Roy, M.-F.: Bounding the Betti numbers of semialgebraic sets defined by partly quadratic systems of polynomials. J. Eur. Math. Soc. 12, 529–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bürgisser, P.: Average Euler characteristic of random algebraic varieties. C. R. Acad. Sci. Paris 345, 507–512 (2007)

    Article  MATH  Google Scholar 

  8. Degtyarev, A., Itenberg, I., Kharlamov, V.: On the number of connected components of a complete intersection of real quadrics. In: Itenberg, I., et al. (eds.) Perspectives in Analysis, Geometry, and Topology. Progress in Mathematics, vol. 296, pp. 81–107. Birkhauser/Springer, New York (2012)

    Chapter  Google Scholar 

  9. Eckart, G., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  10. Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. Am. Math. Soc. 32, 1–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdös, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229, 1359–2122 (2012)

    Article  MathSciNet  Google Scholar 

  12. Forrester, P.J., Witte, N.S.: \(\tau \)-Function evaluation of gap probabilities in orthogonal and symplectic matrix ensembles. Nonlinearity 15, 937–954 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fyodorov, Y.V.: Introduction to the random matrix theory: Gaussian unitary ensemble and beyond. In: Recent Perspectives Inrandom Matrix Theory and Number Theory. London Mathematical Society Lecture Note, vol. 322. Cambridge University Press, Cambridge (2005)

  14. Fyodorov, Y.V., Lerario, A., Lundberg, E.: On the number of connected components of random algebraic hypersurfaces. J. Geom. Phys. 95, 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gaudin, M.: Sur la loi limite de l’espacement des valeurs propres d’une matrice aleatoire. Nuclear Phys. 25, 447–458 (1961)

    Article  MATH  Google Scholar 

  16. Gayet, D., Welschinger, J-Y.: Betti numbers of random real hypersurfaces and determinants of random symmetric matrices. J. Eur. Math. Soc. (2012). http://arxiv.org/abs/1207.1579

  17. Gayet, D., Welschinger, J.-Y.: Lower estimates for the expected Betti numbers of random real hypersurfaces. J. Lond. Math. Soc. 90, 105–120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gayet, D., Welschinger, J.-Y.: What is the total Betti number of a random real hypersurface? J. Reine Angew. Math. 689, 137–168 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Gayet, D., Welschinger, J.-Y.: Topology of random real algebraic submanifolds. J. Inst. Math. Jussieu 14, 673–702 (2015)

    Article  MathSciNet  Google Scholar 

  20. Helmke, U., Shayman, M.A.: Critical points of matrix least squares distance functions. Linear Algebra Appl. 215, 1–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D 1, 80–158 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lerario, A.: Convex pencils of real quadratic forms. Discrete Comput. Geom. 48, 1025–1047 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Lerario, A.: Complexity of intersection of real quadrics and topology of symmetric determinantal varieties. J. Eur. Math. Soc. (2012). http://arxiv.org/abs/1211.1444

  24. Lerario, A.: Random matrices and the expected topology of quadric hypersurfaces. Proc. Am. Math. Soc. 143, 3239–3251 (2015)

    Article  MathSciNet  Google Scholar 

  25. Lerario, A., Lundberg, E.: Statistics on Hilbert’s sixteenth problem. Int. Math. Res. Not. 2015(12), 4293–4321 (2015)

    MathSciNet  Google Scholar 

  26. Mehta, M.L.: Random Matrices. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  27. Nastasescu, M.: The number of ovals of a real plane curve. Senior Thesis, Princeton (2011). http://www.its.caltech.edu/mnastase/Senior_Thesis.html

  28. Nazarov, F., Sodin, M.: On the number of nodal domains of random spherical harmonics. Am. J. Math. 131, 1337–1357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olver, F.W.J.: On an asymptotic expansion of a ratio of gamma functions. Proc. R. Ir. Acad. Sect. A 95, 5–9 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Podkorytov, S.S.: The mean value of the Euler characteristic of an algebraic hypersurface. St. Petersbg. Math. J. 11, 853–860 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Sarnak, P.: Letter to B. Gross and J. Harris on ovals of random plane curves (2011). http://publications.ias.edu/sarnak/section/515

  32. Tao, T.: Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence, RI (2012)

    MATH  Google Scholar 

  33. Vinnikov, V.: Self-adjoint determinantal representations of real plane curves. Math. Ann. 296, 453–479 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Saugata Basu for his constant support and Peter Sarnak for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lerario.

Additional information

Editor in Charge: Jànos Pach

Appendix: Asymptotic Analysis of Theorem 11

Appendix: Asymptotic Analysis of Theorem 11

The following lemma is a combination of Proposition 7 and Corollary 3 from [16] and gives the exact formula for \(\mathcal {M}_{n-1}^{+}(1,2)\) together with its asymptotic behavior.

Lemma 14

$$\begin{aligned}&\mathcal {M}_{n-1}^{+}(1,2) \\&\quad = \frac{1}{2}\left\{ \begin{array}{cl} \frac{2\sqrt{2}}{\pi }\Gamma \left( \frac{n+1}{2}\right) &{} \text { for even } n,\\ (-1)^m\frac{(n-1)!}{m!2^{n-1}}+(-1)^{m-1} \frac{4\sqrt{2}(n-1)!}{\sqrt{\pi }m!2^{n-1}}\sum _{k=0}^{m-1}(-1)^k\frac{\Gamma (k+3/2)}{k!} &{} \text { for odd } n=2m+1. \\ \end{array} \right. \end{aligned}$$

Moreover as n goes to infinity (regardless its parity):

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(1,2)\sim \frac{\sqrt{2}}{\pi }\Gamma \big (\frac{n+1}{2}\big ). \end{aligned}$$

As for the other two cases we have the following lemmas.

Lemma 15

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(2,3) = \left\{ \begin{array}{ll} \frac{1}{\pi }\Gamma \left( \frac{n+1}{2}\right) ^2 &{}\quad \text {for even } n,\\ \frac{n}{2\pi }\Gamma \left( \frac{n}{2}\right) ^2 &{}\quad \text {for odd } n=2m+1. \\ \end{array} \right. \end{aligned}$$

Moreover as n goes to infinity (regardless its parity):

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(2,3)\sim \frac{1}{\pi }\Gamma \big (\frac{n+1}{2}\big )^2. \end{aligned}$$

Proof

We start by recalling the following formula from [26]:

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(2,3)=\frac{1}{2}\prod _{j=1}^{n-1}\frac{\Gamma (3/2+\lfloor j/2\rfloor )}{\Gamma (1/2+\lfloor j/2\rfloor )}. \end{aligned}$$

Using the identity \(\Gamma (z+1)=z\Gamma (z)\) in the above formula with \(z=1/2+\lfloor j/2\rfloor ,\) we can rewrite it as

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(2,3)&=\frac{1}{2}\prod _{j=1}^{n-1}\big (\frac{1}{2} + \big \lfloor \frac{j}{2}\big \rfloor \big )\\&=\frac{1}{2}\big (\prod _{1\le j\le n-1, j \text { even}}\frac{j+1}{2}\big )\cdot \big (\prod _{1\le j\le n-1, j \text { odd}}\frac{j}{2}\big )\\&=\frac{1}{2^{n}}\big (\prod _{2\le k\le n, k \text { odd}}k\big )\cdot \big (\prod _{1\le k\le n, k \text { odd}}k\big )=\frac{c_n}{2^n}\prod _{1\le k\le n, k \text { odd}}k^2, \end{aligned}$$

where \(c_n=1\) for even n and n for odd ones. Thus if \(n=2m\) is even, we have

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(2,3)&=\frac{1}{2^n}(2m-1)!!^2\\&=\frac{2^{2m-n}}{\pi }\Gamma (m+1/2)^2 = \frac{1}{\pi } \Gamma \big (\frac{n+1}{2}\big )^2, \end{aligned}$$

where in the last line we have used the identity \(\Gamma (m+1/2)=\sqrt{\pi }\frac{(2m-1)!!}{2^m}.\) In the case \(n=2m+1\) is odd, recalling the value \(c_{n\text { odd}}=n\), we have

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(2,3)&=n\frac{1}{2^n}(1\cdot 2\cdots (2m-1))^2 = n \frac{\Gamma (m+1/2)^2}{2\pi }\\&=\frac{n}{2\pi }\Gamma \left( \frac{n}{2}\right) ^2. \end{aligned}$$

The asymptotics are a simple application of Stirling’s formula. \(\square \)

Lemma 16

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(4,5)=\frac{4^{-n+1}}{\pi } \Gamma \big ( n+ \frac{1}{2} \big )^2 2 H_n(-1) , \end{aligned}$$

where \(H_n\) is a hypergeometric function such that \(2 H_n(-1) = 1 + o(1)\) as \(n \rightarrow \infty \). In particular as n goes to infinity:

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(4,5)\sim \frac{1}{4^{n-1}\pi }\Gamma \big (n+\frac{1}{2}\big )^2. \end{aligned}$$

Proof

We start by recalling equation (26.3.10) from [26]:

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(4,5)&=\frac{1}{2^{2n-1}}\prod _{j=0}^{n-2} \frac{\Gamma (j+5/2)}{\Gamma (j+3/2)}\sum _{k=0}^{n-1}{n-1\atopwithdelims ()k}(1)_{k}(3/2)_{n-1-k}\\&=\frac{1}{2^{2n-1}}\big (\prod _{j=0}^{n-2} \frac{\Gamma (j+5/2)}{\Gamma (j+3/2)}\big )\cdot \frac{2}{\pi }\Gamma (n+1/2) {}_{2}F_{1} \big ( 1,1-n,\frac{1}{2}-n,-1 \big ). \end{aligned}$$

In the above line \(_2F_1\) denotes the hypergeometric function; let us set

$$\begin{aligned} H_{n}(-1)= {}_{2}F_{1} \big ( 1,1-n,\frac{1}{2}-n,-1 \big ). \end{aligned}$$

With this notation we have

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(4,5)&=\frac{2 H_{n}(-1)}{\sqrt{\pi }2^{2n-1}} \Gamma (n+1/2)\prod _{j=0}^{n-2} \frac{\Gamma (j+5/2)}{\Gamma (j+3/2)}\\&=\frac{2 H_{n}(-1)}{\sqrt{\pi }2^{2n-1}} \Gamma (n+1/2)\prod _{j=0}^{n-2}(j+3/2), \end{aligned}$$

where again the last line we have used \(\Gamma (z+1)=z\Gamma (z)\) for \(z=j+3/2.\) Recalling also the identity \(\prod _{j=0}^{n-2}(j+3/2)=\frac{2}{\pi }\Gamma (n+1/2),\) we finally get

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(4,5)=\frac{2 H_{n}(-1)}{\pi 4^{n-1}}\Gamma \big (n+\frac{1}{2}\big )^2. \end{aligned}$$

It remains to prove the limit \(2H_n(-1)\rightarrow 1\). First we use the Pfaff transformation:

$$\begin{aligned} {}_{2}F_{1}(a,b;c;z) = (1-z)^{-a} \cdot {}_{2}F_{1} \big ( a,b-c;c;\frac{z}{z-1} \big ). \end{aligned}$$

In our case

$$\begin{aligned} 2 \cdot {}_{2}F_{1} \big ( 1,-n;-n-\frac{1}{2};-1 \big ) = {}_{2}F_{1} \big ( 1,-\frac{1}{2};-n-\frac{1}{2};\frac{1}{2} \big ). \end{aligned}$$

Now we use the series definition in terms of the Pockhammer symbol:

$$\begin{aligned} {}_{2}F_{1}\big ( 1,-\frac{1}{2};-n-\frac{1}{2};\frac{1}{2} \big ) = \sum _{k=0}^{\infty } \frac{(-1/2)_k}{(-n-1/2)_k} (1/2)^k. \end{aligned}$$

We need to show that the right hand side \(\rightarrow 1\). We have

$$\begin{aligned} \sum _{k=0}^{\infty } \frac{(-1/2)_k}{(-n-1/2)_k} (1/2)^k&= 1 + \frac{1}{4(n+1/2)}\sum _{k=1}^{\infty } \frac{(1/2)_{k-1}}{(-n+1/2)_{k-1}} (1/2)^{k-1}. \end{aligned}$$
(25)

We use the rough bound:

$$\begin{aligned} \big | \sum _{k=0}^{\infty } \frac{(1/2)_{k}}{(-n+1/2)_{k}} (1/2)^{k} \big |&\le \sum _{k=0}^{n} (1/2)^{k} + \frac{1}{|(-n+1/2)_n|} \sum _{k=n+1}^{\infty } \frac{(1/2)_{k}}{(1/2)_{k-n}} (1/2)^{k}, \\&\le 2 + \frac{(1/2)^n}{|(-n+1/2)_n|} \sum _{k=n+1}^{\infty } \frac{k!}{(k-n)!} (1/2)^{k-n} \\&= 2+ \frac{n!}{|(-n+1/2)_n|}(1/2)^n \frac{F^{(n)}(1/2)}{n!} , \end{aligned}$$

where

$$\begin{aligned} F(z) = \frac{1}{1-z} . \end{aligned}$$

We have

$$\begin{aligned} F^{(n)}(1/2)/n! = O(1) \cdot 2^n . \end{aligned}$$

Applying this along with Stirling’s approximation:

$$\begin{aligned} 2+ \frac{n!}{|(-n+1/2)_n|}(1/2)^n \frac{F^{(n)}(1/2)}{n!} = 2 + \frac{n!}{|(-n+1/2)_n|} O(1) = o(n). \end{aligned}$$

This shows that (25) equals \(1 + \frac{1}{4(n+1/2)} o(n) = 1 + o(1)\), as desired. \(\square \)

As a corollary we get the following asymptotic for the volume of \(\Sigma _{\beta ,n}\).

Corollary 17

For each \(\beta =1,2,4\) we have

$$\begin{aligned} \frac{|\Sigma _{\beta ,n} |}{|S^{N_\beta - 2}|}\sim \frac{2}{\sqrt{\pi }}n^{\frac{1}{2}}. \end{aligned}$$

Remark 4

In our main application of this asymptotic (Theorem 8) we will need, for \(\beta =1\), a more precise error bound:

$$\begin{aligned} \frac{|\Sigma _{1,n} |}{|S^{N_1 - 2}|} = \frac{2}{\sqrt{\pi }}n^{\frac{1}{2}} + O(1). \end{aligned}$$

Proof

Recall from Theorem 11 (and the remark below it) that

$$\begin{aligned} \frac{|\Sigma _{\beta ,n} |}{|S^{N_\beta - 2}|} =2n \beta ^{\frac{n\beta -\beta +1}{2}}\frac{\Gamma (1+\beta /2)}{\Gamma (1+\beta n/2)}\mathcal {M}_{n-1}^{+}(\beta , \beta +1). \end{aligned}$$

The result follows applying Stirling’s approximation to the asymptotic for \(\mathcal {M}_{n-1}^{+}(\beta , \beta +1)\) given in Lemmas 1415, and 16.

The error bound stated in the Remark follows immediately from the error in Stirling’s approximation for n even. For \(n = 2m+1\) odd, reading the proof of Lemma 14 which was given in [16, Cor. 3], one can conclude that

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(1,2) = \frac{(n-1)!}{m! 2^{n-1}} \big ( (-1)^m + \frac{4\sqrt{2}}{\sqrt{\pi }} S_m \big ), \end{aligned}$$
(26)

where

$$\begin{aligned} S_m = \frac{1}{2}\sum _{j=0}^{m/2-1} \frac{\Gamma (2j + 2 - 1/2)}{ \Gamma (2j + 2)}, \end{aligned}$$

for m even, and

$$\begin{aligned} S_m = \frac{\Gamma (m+1/2)}{\Gamma (m)} - \frac{1}{2}\sum _{j=0}^{(m-1)/2-1} \frac{\Gamma (2j + 2 - 1/2)}{ \Gamma (2j + 2)}, \end{aligned}$$

for m odd. Using the asymptotic [29]

$$\begin{aligned} \frac{\Gamma (z+a)}{\Gamma (z+b)} = z^{a-b}(1+ O(1/z)), \end{aligned}$$

along with an integral estimate for the sum we have (regardless of the parity of m):

$$\begin{aligned} S_m = \frac{\sqrt{m}}{2} + O(m^{-1/2}). \end{aligned}$$

Applying this to (26) gives

$$\begin{aligned} \mathcal {M}_{n-1}^{+}(1,2) = \frac{(n-1)!}{m! 2^{n-1}} \big ( (-1)^m + \frac{4\sqrt{2}}{\sqrt{\pi }} S_m \big ) = \frac{\sqrt{2}}{\pi } \Gamma \big ( \frac{n+1}{2} \big ) ( 1 + O(n^{-1/2})). \end{aligned}$$

Using Stirling’s approximation for

$$\begin{aligned} \frac{C_1(n)}{C_1(n-1)} = \frac{\Gamma (1+1/2)}{\sqrt{2\pi } \Gamma (1+n/2)}, \end{aligned}$$

and plugging this into the exact formula gives:

$$\begin{aligned} \frac{|\Sigma _{1,n} |}{|S^{N_1 - 2}|} = \frac{2}{\sqrt{\pi }}n^{\frac{1}{2}}(1 + O(n^{-1/2})). \end{aligned}$$

The asymptotic of Theorem 10 follows again from Lemmas 14, 15 and 16.

Corollary 18

The following asymptotic holds for the derivative at zero of the gap probability:

$$\begin{aligned} f'_{\beta , n}(0)\sim -\frac{2\sqrt{2}}{\pi }n^{1/2}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerario, A., Lundberg, E. Gap Probabilities and Betti Numbers of a Random Intersection of Quadrics. Discrete Comput Geom 55, 462–496 (2016). https://doi.org/10.1007/s00454-015-9741-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9741-7

Keywords

Navigation