Skip to main content
Log in

Opaque Sets

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The problem of finding “small” sets that meet every straight-line which intersects a given convex region was initiated by Mazurkiewicz in 1916. We call such a set an opaque set or a barrier for that region. We consider the problem of computing the shortest barrier for a given convex polygon with n vertices. No exact algorithm is currently known even for the simplest instances such as a square or an equilateral triangle. For general barriers, we present an approximation algorithm with ratio \(\frac{1}{2}+ \frac{2 +\sqrt{2}}{\pi}=1.5867\ldots\) . For connected barriers we achieve the approximation ratio 1.5716, while for single-arc barriers we achieve the approximation ratio \(\frac{\pi+5}{\pi+2} = 1.5834\ldots\) . All three algorithms run in O(n) time. We also show that if the barrier is restricted to the (interior and the boundary of the) input polygon, then the problem admits a fully polynomial-time approximation scheme for the connected case and a quadratic-time exact algorithm for the single-arc case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akman, V.: An algorithm for determining an opaque minimal forest of a convex polygon. Inf. Process. Lett. 24, 193–198 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asimov, D., Gerver, J.L.: Minimum opaque manifolds. Geom. Dedic. 133, 67–82 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bagemihl, F.: Some opaque subsets of a square. Mich. Math. J. 6, 99–103 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bárány, I., Füredi, Z.: Covering all secants of a square. In: Fejes Tóth, G. (ed.) Intuitive Geometry, Siófok, Hungary, 1985. Colloq. Math. Soc. János Bolyai, vol. 48, pp. 19–27. North-Holland, Amsterdam (1987)

    Google Scholar 

  5. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  6. Blaschke, W.: Kreis und Kugel, 2. Aufl. Walter de Gruyter, Berlin (1956)

    Book  MATH  Google Scholar 

  7. Brakke, K.A.: The opaque cube problem. Am. Math. Mon. 99(9), 866–871 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Croft, H.T.: Curves intersecting certain sets of great-circles on the sphere. J. Lond. Math. Soc. (2) 1, 461–469 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  9. Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry. Springer, New York (1991)

    Book  MATH  Google Scholar 

  10. Demaine, E.D., O’Rourke, J.: Open problems from CCCG 2007. In: Proceedings of the 20th Canadian Conference on Computational Geometry (CCCG 2008), Montréal, Canada, August 2008, pp. 183–190 (2008)

    Google Scholar 

  11. Dublish, P.: An O(n 3) algorithm for finding the minimal opaque forest of a convex polygon. Inf. Process. Lett. 29(5), 275–276 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dumitrescu, A., Jiang, M.: Minimum-perimeter intersecting polygons. Algorithmica 63, 602–615 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eggleston, H.G.: The maximal in-radius of the convex cover of a plane connected set of given length. Proc. Lond. Math. Soc. (3) 45, 456–478 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Erdős, P., Pach, J.: On a problem of L. Fejes Tóth. Discrete Math. 30(2), 103–109 (1980)

    Article  MathSciNet  Google Scholar 

  15. Faber, V., Mycielski, J.: The shortest curve that meets all the lines that meet a convex body. Am. Math. Mon. 93, 796–801 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Faber, V., Mycielski, J., Pedersen, P.: On the shortest curve which meets all the lines which meet a circle. Ann. Pol. Math. 44, 249–266 (1984)

    MATH  MathSciNet  Google Scholar 

  17. Fejes Tóth, L.: Exploring a planet. Am. Math. Mon. 80, 1043–1044 (1973)

    Article  MATH  Google Scholar 

  18. Fejes Tóth, L.: Remarks on a dual of Tarski’s plank problem. Mat. Lapok 25, 13–20 (1974)

    MathSciNet  Google Scholar 

  19. Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  20. Gardner, M.: The opaque cube problem. Cubism Fun 23, 15 (1990)

    Google Scholar 

  21. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gupta, H.M.S., Mazumdar, N.C.B.: A note on certain plane sets of points. Bull. Calcutta Math. Soc. 47, 199–201 (1955)

    MATH  MathSciNet  Google Scholar 

  23. Honsberger, R.: Mathematical Morsels. Dolciani Mathematical Expositions, vol. 3. The Mathematical Association of America (1978)

    MATH  Google Scholar 

  24. Jones, R.E.D.: Opaque sets of degree α. Am. Math. Mon. 71, 535–537 (1964)

    Article  MATH  Google Scholar 

  25. Joris, H.: Le chasseur perdu dans le foret: une problème de géométrie plane. Elem. Math. 35, 1–14 (1980)

    MATH  MathSciNet  Google Scholar 

  26. Kawohl, B.: Some nonconvex shape optimization problems. In: Cellina, A., Ornelas, A. (eds.) Optimal Shape Design. Lecture Notes in Mathematics, vol. 1740/2000. Springer, New York (2000)

    Chapter  Google Scholar 

  27. Kazarinoff, N.D.: Geometric Inequalities. Random House, New York (1961)

    Google Scholar 

  28. Kern, W., Wanka, A.: On a problem about covering lines by squares. Discrete Comput. Geom. 5, 77–82 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Klötzler, R.: Universale rettungskurven I. Z. Anal. Anwend. 5, 27–38 (1986)

    MATH  Google Scholar 

  30. Klötzler, R., Pickenhain, S.: Universale rettungskurven II. Z. Anal. Anwend. 6, 363–369 (1987)

    Google Scholar 

  31. Kranakis, E., Krizanc, D., Narayanan, L., Xu, K.: Inapproximability of the perimeter defense problem. In: Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG 2009), Vancouver, Canada, August 2009, pp. 153–156 (2009)

    Google Scholar 

  32. Makai, E. Jr.: On a Dual of Tarski’s Plank Problem. Discrete Geometrie, 2, pp. 127–132. Kolloq., Inst. Math. Univ., Salzburg (1980)

    Google Scholar 

  33. Makai, E. Jr., Pach, J.: Controlling function classes and covering Euclidean space. Studia Sci. Math. Hung. 18, 435–459 (1983)

    MATH  MathSciNet  Google Scholar 

  34. Mazurkiewicz, S.: Sur un ensemble fermé, punctiforme, qui rencontre toute droite passant par un certain domaine (Polish, French summary). Pr. Mat.-Fiz. 27, 11–16 (1916)

    MATH  Google Scholar 

  35. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  37. Preparata, F., Shamos, M.I.: Computational Geometry. Springer, New York (1985)

    Book  Google Scholar 

  38. Provan, J.S.: Convexity and the Steiner tree problem. Networks 18, 55–72 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rademacher, H., Toeplitz, O.: The Enjoyment of Mathematics. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  40. Richardson, T., Shepp, L.: The “point” goalie problem. Discrete Comput. Geom. 20, 649–669 (2003)

    Article  MathSciNet  Google Scholar 

  41. Shermer, T.: A counterexample to the algorithms for determining opaque minimal forests. Inf. Process. Lett. 40, 41–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of Mediterranean Electrotechnical Conference (MELECON’83), Athens (1983)

    Google Scholar 

  43. Valtr, P.: Unit squares intersecting all secants of a square. Discrete Comput. Geom. 11, 235–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  44. Welzl, E.: The smallest rectangle enclosing a closed curve of length π, manuscript (1993). Available at http://www.inf.ethz.ch/personal/emo/SmallPieces.html

  45. Yaglom, I.M., Boltyanskiĭ, V.G.: Convex Figures. Holt, Rinehart & Winston, New York (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Jiang.

Additional information

A. Dumitrescu was supported in part by NSF CAREER grant CCF-0444188 and by NSF grant DMS-1001667. Part of the research by this author was done at Ecole Polytechnique Fédérale de Lausanne.

M. Jiang was supported in part by NSF grant DBI-0743670.

J. Pach research was partially supported by NSF grant CCF-08-30272, grants from OTKA, SNF, and PSC-CUNY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, A., Jiang, M. & Pach, J. Opaque Sets. Algorithmica 69, 315–334 (2014). https://doi.org/10.1007/s00453-012-9735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9735-2

Keywords

Navigation